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Mainstream object-oriented programming languages such as Java, Scala, C#, or TypeScript have polymorphic

type systems with subtyping and bounded quanti�cation. Bounded quanti�cation, despite being a pervasive

and widely used feature, has attracted little research work on type-inference algorithms to support it. A

notable exception is local type inference, which is the basis of most current implementations of type inference

for mainstream languages. However, support for bounded quanti�cation in local type inference has important

restrictions, and its non-algorithmic speci�cation is complex.

In this paper, we present a variant of kernel �≤ , which is the canonical calculus with bounded quanti�cation,

with implicit polymorphism. Our variant, called �1≤ , comes with a declarative and an algorithmic formulation

of the type system. The declarative type system is based on previous work on bidirectional typing for

predicative higher-rank polymorphism and a greedy approach to implicit instantiation. This allows for a clear

declarative speci�cation where programs require few type annotations and enables implicit polymorphism

where applications omit type parameters. Just as local type inference, explicit type applications are also

available in �1≤ if desired. This is useful to deal with impredicative instantiations, which would not be allowed

otherwise in �1≤ . Due to the support for impredicative instantiations, we can obtain a completeness result

with respect to kernel �≤ , showing that all the well-typed kernel �≤ programs can type-check in �1≤ . The

corresponding algorithmic version of the type system is shown to be sound, complete, and decidable. All the

results have been mechanically formalized in the Abella theorem prover.
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1 INTRODUCTION

Bounded quanti�cation [Cardelli and Wegner 1985] is an extension of parametric polymorphism,
where type variables can have subtyping bounds. Mainstream object-oriented programming lan-
guages such as Java, Scala, C#, or TypeScript have polymorphic type systems with subtyping and
bounded quanti�cation. The canonical calculus for bounded quanti�cation is �≤ [Cardelli et al.
1991; Cardelli and Wegner 1985; Curien and Ghelli 1992], which is an extension of System � [Girard
1972; Reynolds 1974] with subtyping and bounded quanti�ers. Like System � , polymorphism in
�≤ is explicit, which means that explicit type applications are necessary to instantiate the type
arguments of polymorphic functions. There are two well-known variants of �≤ in the literature.
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The full variant of �≤ [Curien and Ghelli 1992] is the more expressive one but, unfortunately, it
is well-known that subtyping for full �≤ is undecidable [Pierce 1992]. The other variant is ker-
nel �≤ [Cardelli and Wegner 1985], which is the most well-known and used decidable variant of �≤ .
Since we are interested in decidable type systems in this paper, we will focus on kernel �≤ .
A practical drawback of explicit polymorphism in System � or �≤ is that programs require too

much type information to type check. Therefore, to make programming languages with (bounded)
parametric polymorphism practical, implicit polymorphism is needed. For System � , there have been
many proposals for global type inference with implicit polymorphism [Dun�eld and Krishnaswami
2013; Le Botlan and Rémy 2003; Leijen 2008; Odersky and Läufer 1996; Peyton Jones et al. 2007;
Serrano et al. 2018; Vytiniotis et al. 2008], typically designed as extensions of the Hindley-Milner
type system (HM) [Hindley 1969; Milner 1978]. One well-known strand of work is type systems
with predicative Higher Ranked Polymorphism (HRP). In the context of HRP, predicative means
that instantiations can only bemonotypes, which are types that are not polymorphic. This imposes a
restriction compared to System � , where instantiations can also be polymorphic types. Nonetheless,
predicative HRP has been shown to work quite well in practice for many applications since most
instantiations required in practice use monotypes.

One extension to predicative HRP is to combine implicit instantiation with explicit type applica-
tions. Eisenberg et al. [2016] proposed extensions to both HM and a predictive HRP system with
predicative explicit type applications. With explicit type applications, programmers can choose
their own instantiations by using type applications similar to System � . A complication that arises
in combining implicit instantiation with explicit type applications is that the usual predicative
subtyping relation for HRP, due to Odersky and Läufer [1996], is incompatible with explicit type
applications. Eisenberg et al. [2016] proposed modi�ed subtyping relations that are compatible
with predicative explicit type applications. More recently, Zhao and Oliveira [2022] proposed to
extend a predicative HRP type system, called �4≤ , with impredicative explicit type applications. The
impredicativity of explicit type applications requires further changes to the HRP subtyping relation.
There is little work on predicative HRP type inference with bounded quanti�cation. Zhao

and Oliveira consider a subtyping relation with top and bottom types, but �4≤ does not have
bounded quanti�cation. Cardelli [1993] implemented a type-inference algorithm for �≤ , but did not
formally study it. The only formal study that we are aware of supporting bounded quanti�cation
is by Sequeira [1998], who has studied a calculus called ML∀≤ : a System � variant with bounded
quanti�cation. The kind of type inference supported by Sequeira’s work is quite ambitious since
ML∀≤ supports let generalization and the inference of principal types, just as HM. However,
as Sequeira admits, his algorithm is impractical because it infers subtyping constraints without
simpli�cation. For example, he notes that the type inferred for a quicksort algorithm has around
300 constraints. Thus, many inferred types are too large and di�cult to understand for humans.
The de facto technique to deal with type inference for languages with bounded quanti�cation

is local type inference [Odersky et al. 2001; Pierce and Turner 2000]. Unlike HM and global type
inference HRP approaches, local type inference does not employ long-distance constraints such
as uni�cation variables and only employs a local constraint solver to infer type arguments in
polymorphic applications. This is less powerful than global approaches but, as argued by Pierce
and Turner, has the advantage of scaling up to features that are hard to deal with using global
type-inference approaches. For instance, local type inference techniques can deal with subtyping
and impredicative instantiations. Despite the technical di�erences, both (predicative) HRP and
local type inference target the problem of type inference for higher-rank polymorphic languages.
Moreover, local type inference complements implicit polymorphism with support for explicit type
applications, like some predicative HRP approaches. Programmers can explicitly provide type
instantiations when automatic (implicit) inference fails to �nd them.
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Local type inference has more modest goals regarding type inference compared to HM-style
inference and many HRP type-inference approaches. In particular, local type inference does not
provide any mechanism to infer the types of arguments for (top-level) functions and does not have
to deal with the question of �nding principal types for polymorphic functions. In this way, the issues
with Sequeira’s approach are a non-issue for local type inference since all polymorphic functions
are given explicit type annotations. While local type inference has shown its value in practice, it
has some important limitations that were identi�ed by Hosoya and Pierce [1999]; Pierce and Turner
[2000]: hard-to-synthesize arguments; no best argument; and no support for interdependent bounds. In
particular, for bounded quanti�cation Pierce and Turner did not know how to extend the algorithm
to support interdependent bounds such as ∀(0 ≤ >). ∀(1 ≤ 0). · · · where the type variable 1 is
bounded by another type variable 0. Thus, their algorithm cannot infer such implicit instantiations.
In Section 2.2 we will discuss these limitations in more detail. Especially in the presence of bounded
quanti�cation, local type inference requires a complex speci�cation that makes it hard to predict
when instantiations will be successfully inferred.

In this paper, we present a variant of kernel �≤ , called �
1
≤ , with implicit predicative polymorphism

as well as explicit impredicative type applications. The declarative type system of �1≤ is simple

and clear. �1≤ extends Zhao and Oliveira’s �4≤ calculus with bounded quanti�cation. In the design
of �4≤ , the authors follow a philosophy similar to local type inference but instead advocate for a
more modest form of global type inference: i.e., no let generalization or automatic inference of
(top-level) polymorphic functions is allowed. Moreover, easy (predicative) instantiations can always

be guessed automatically, but hard (impredicative) instantiations require explicit type applications.
They call this, a more modest form of global type inference, elementary type inference. �1≤ adopts a

similar philosophy. Furthermore, implicit instantiations in �1≤ support interdependent bounds and

deal with several other weaknesses of local type inference, and �1≤ can type check all kernel �≤
programs.

In �1≤ , a critical question is what is a monotype? The approach for �nding implicit instantiations

is greedy [Cardelli 1993]. That is, once an instantiation is found, �1≤ commits to that instantiation,
regardless of other possible instantiations that can be found later. This greedy approach follows
previous predicative HRP approaches, which have the property that monotype subtyping implies
equality of monotypes. This ensures that if a monotype works for the �rst instantiation, it also
works for the subsequent instantiations. However, without care, the property easily breaks in the
presence of more expressive subtyping relations. In addition, it turns out that in �1≤ , if all the type
variables are considered monotypes, the transitivity of subtyping is lost! Thus, while typically
monotypes are de�ned in a purely syntactic way, this is not the case in �1≤ . In particular, whether or
not type variables are considered to be monotypes depends on their bounds. With careful crafting
of what constitutes a monotype, we can ensure that the greedy approach is always successful and
the transitivity of subtyping is preserved.
The algorithmic version of the type system is shown to be sound, complete, and decidable. We

introduce two new algorithmic techniques: polytype splitting and worklist substitutions. Polytype
splitting is a simple technique where functional existential (or uni�cation) variables are only split
into two existential variables if they unify with a polytype. Polytype splitting has the property that
the number of splits is statically determined, which helps derive a simpler measure for decidability.
Worklist substitutions simplify the presentation and proofs of the algorithmic system by dealing
with necessary reorderings that arise from widening the scope of existential variables. We also
discuss a variant with a more general notion of monotype. The declarative system of this system
still preserves all the desirable properties, but the greedy algorithm is no longer complete. All the
results have been mechanically formalized in the Abella theorem prover.
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In summary, the contributions of this paper are:
• A declarative bidirectional type system with predicative implicit bounded quanti�cation
and impredicative explicit type applications. The declarative type system guesses monotypes.
Monotypes are unconventional in that they require a non-syntactic formulation due to the
presence of bounds in type variables.

• An algorithmic formulation of the type system, which is shown to be sound, complete

and decidable with respect to the declarative formulation. The algorithm employs a worklist
formulation inspired by Zhao et al. [2019]’s work.

• New algorithmic techniques:We introduce two new algorithmic techniques: polytype splitting
and worklist substitutions. Both techniques are helpful in providing a simple algorithm, and they
also simplify some of the key proofs, in particular decidability.

• A variant of �1≤ with monotype subtyping: In Section 5, we present a variant of �1≤ that
deals with subtyping between monotypes during implicit instantiation. This variant has a more
general notion of monotypes, and infers more instantiations at the cost of completeness.

• Completeness with respect to kernel �≤ : �
1
≤ ’s type system is shown to be complete with

respect to kernel �≤ . In other words, all the programs that type check in �≤ also type check in
�1≤ .

• Mechanical formalization and implementation:All the calculi and proofs in this paper have
been mechanically formalized in the Abella theorem prover [Gacek 2008]. We also have a simple
Haskell implementation, which type checks all the �1≤ examples in this paper. The supplementary
materials [Cui et al. 2023], including the implementation, proofs, and the extended version of
the paper are available at: https://doi.org/10.5281/zenodo.8202095.

2 OVERVIEW

We start with a background on implicit (predicative) higher-rank polymorphic (HRP) type inference
and elementary type inference [Zhao and Oliveira 2022]. Then, we discuss the limitations of
local type inference and its variants in dealing with languages with �≤ features and bounded
quanti�cation. Finally, we illustrate the key ideas in our work that address some of these limitations
and discuss technical innovations over previous work.

2.1 Background: Predicative and Elementary Type Inference

Higher-rank polymorphism for languages à la System � allows universal types to appear in arbitrary
positions in types, which lifts restrictions of top-level universal types in the Hindley-Milner type
system. The �4≤ calculus [Zhao and Oliveira 2022] additionally supports impredicative instantiation
by explicit type applications provided by the programmer, which allows it to type-check all the
programs typable in System � . There are several important design principles of �4≤ that are in place
to preserve properties such as subsumption and inferring all easy instantiations.

HRP subtyping and explicit type applications. The introduction of explicit type applications
invalidates some subtyping rules commonly used in predicative HRP systems, and in particular in
the well-known subtyping relation for HRP by Odersky and Läufer [1996]. The two key rules in
Odersky and Läufer’s subtyping relation are:

Ψ ` g Ψ ` [g/0]� ≤ �

Ψ ` ∀0. � ≤ �
≤∀L

Ψ, 1 ` � ≤ �

Ψ ` � ≤ ∀1. �
≤∀R

These rules enable order-irrelevant universal quanti�ers. For instance, both of the following
subtyping relations hold: ∀0. ∀1. 0 → 1 ≤ ∀1. ∀0. 0 → 1 and ∀1. ∀0. 0 → 1 ≤ ∀0. ∀1. 0 → 1. Thus,
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Type variables 0, 1 Subtype variables 0̃, 1̃

Types �, �,� ::= 1 | 0 | ∀0. � | � → � | 0̃ | > | ⊥

Monotypes g, f ::= 1 | 0 | g → f

Contexts Ψ ::= · | Ψ, 0 | Ψ, G : � | Ψ, 0̃

Ψ ` � ≤ � � is a subtype of �

Ψ ` 1 ≤ 1
≤Unit

Ψ ` � ≤ >
≤>

Ψ ` ⊥ ≤ �
≤⊥

0 ∈ Ψ

Ψ ` 0 ≤ 0
≤Var

0̃ ∈ Ψ

Ψ ` 0̃ ≤ 0̃
≤SVar

Ψ ` g Ψ ` [g/0]� ≤ � � is not a ∀ type

Ψ ` ∀0. � ≤ �
≤∀L

Ψ, 0̃ ` [0̃/0]� ≤ [0̃/0]�

Ψ ` ∀0. � ≤ ∀0. �
≤∀

Ψ ` �1 ≤ �1 Ψ ` �2 ≤ �2

Ψ ` �1 → �2 ≤ �1 → �2

≤→

Fig. 1. Declarative Syntax and Subtyping Rules of �4≤ .

_G. G 3 can be checked against both (∀0. ∀1. 0 → 1) → Bool and (∀1. ∀0. 0 → 1) → Bool, by in-
stantiating 0 and 1 to Int and Bool, respectively. However, explicit type applications create problems.
Consider another expression with an explicit type application: _G . (G @Int 3). This expression can
be checked against (∀0. ∀1. 0 → 1) → Bool, but _G. (G @Int 3) ⇐ (∀1. ∀0. 0 → 1) → Bool does
not hold. The problem is that the type application instantiates the wrong universal quanti�er in
the latter expression.

In addition, the possibility of impredicative explicit instantiations introduces two subtler problems.
Firstly, impredicative type applications, such as 5 @(∀0. 0 → 0), also interact with the subtyping
relation. As shown by Zhao and Oliveira, some impredicative type applications break important
stability-of-type-substitutions lemma for subtyping if no restrictions are imposed. Secondly, unused
type variables in universal quanti�ers (for instance, ∀0. �=C ) are equally problematic. We refer to
Zhao and Oliveira’s work for more details on these issues.

Subtyping in �4≤ . To address abovementioned problems, �4≤ imposes three restrictions compared
to Odersky and Läufer’s subtyping relation. Subtyping for �4≤ is shown in Figure 1. The �rst
restriction is to replace ≤∀R with a more restrictive rule (≤∀) that only allows comparing two
universal quanti�ers. This has the consequence of making the order of the universal quanti�ers
relevant, forbidding subtyping statements such as ∀0. ∀1. 0 → 1 ≤ ∀1. ∀0. 0 → 1. The second
restriction is to introduce a new sort of variables, 0̃, called subtype variables, which is used by the
new rule ≤∀. A subtype variable is not a monotype, contrary to the conventional type variable 0 ,
therefore it cannot be instantiated with rule ≤∀L. This restriction is key to ensuring that the stability
of type substitutions lemma for subtyping holds. The �nal restriction is to add two additional
checks in well-formedness, to ensure no unused variables in universal types.

Ψ, 0 ` � 0 ∈ FV(�)

Ψ ` ∀0. �

Ψ, 0 ` � Ψ, 0 ` 4 0 ∈ FV(�)

Ψ ` Λ0. 4 : �

No inference of > and ⊥. �4≤ does not support implicit instantiation of type ⊥ and >, by treating
them as non-monotypes. There are two reasons for this. The �rst reason is technical: allowing
uni�cation with > and ⊥ introduces considerable complications in the uni�cation procedure. Even

a simple Û ≤ V̂ and V̂ ≤ Û → 1, produced by ∀0. (0 → 0 → 1) → 1 ≤ (∀1. 1 → 1) → 1, can have

in�nitely many solutions by picking Û = V̂ = ⊥ | > → 1 | > → ⊥ | · · · and no one is the best.
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The second reason is practical: inference of > and ⊥ types can often mask type errors. For
instance, _5 . (5 + 5 1) can be typed with the type ⊥ → Int, but it is likely to be a programmer’s
error: possibly the programmer forgot an argument in the �rst occurrence of 5 . When programmers
are certain that they need a type involving > or ⊥, they can inform the type-inference algorithm
using type annotations or explicit type applications. Section 2.2 shows more examples that illustrate
some undesirable consequences of enabling the inference of > and ⊥.

�4≤ uses the same greedy solving strategy for implicit instantiation as previous predicative
HRP systems [Dun�eld and Krishnaswami 2013; Odersky and Läufer 1996]. Moreover (like other
HRP systems), �4≤ guarantees that monotype instantiations can always be inferred. There is a
folklore property for such a greedy solving of implicit instantiations on predicative HRP systems
to work: subtyping between monotypes implies equality of monotypes, or formally speaking,
g1 ≤ g2 → g1 = g2. This property is helpful in establishing the completeness of an algorithmic
system with respect to its declarative speci�cation. Suppose that there are two instantiation
judgments (or uni�cation judgments) Û ≤ g1 and Û ≤ g2 produced by the algorithm, and the
declarative speci�cation could guess a g that satis�es g ≤ g1 and g ≤ g2. This means that g1 = g2 and
the order of uni�cation makes no di�erence. Note also that the fact that ⊥ and > are not monotypes
in �4≤ is also crucial for this property to hold. However, this property requires a delicate de�nition
of monotype after bounded quanti�cation is introduced, and we will revisit this in Section 2.3.

2.2 A Tour of Local Type Inference

Local type inference is the most widely used technique for languages with bounded quanti�cation.
To better compare with our work, we will examine a series of examples in Scala 2, which provides
a state-of-the-art implementation of (colored) local type inference [Plociniczak 2016]. Note that the
implementation in Scala 2 contains some improvements compared to the algorithms formalized
by calculi with local type inference [Odersky et al. 2001; Pierce and Turner 2000], enabling more
programs to type-check. We will point out such cases explicitly in the following discussion. Despite
such improvements, well-known limitations of local type inference can still be identi�ed in Scala 21,
including hard-to-synthesize arguments, no best argument, and no support for interdependent bounds.

For readers unfamiliar with the Scala syntax, we explain a few important pieces of syntax �rst. In
Scala types, => denotes the function type constructor. For instance, Int => Int denotes a function
type whose argument and output are both integers. Variables in square brackets ([A]) are universal
variables, possibly with an extra bound ([A <: Int]) for bounded quanti�cation. At the term level,
=> is part of the syntax of lambda abstractions. For instance, x => x + 1 is the syntax for the
lambda abstraction that increments its argument by one.

Hard-to-synthesize arguments. Local type inference employs two techniques to synthesize types:
local type argument synthesis and bidirectional type checking. But circumstances exist when none
of them can be applied, e.g., when a higher-order function is applied to an anonymous function.

def map[A, B](f: A => B, xs: List[A]): List[B] = ...

def mapPlus1: List[Int] = map(x => 1 + x, List(1, 2, 3)) // fails to type check!

To workaround this issue, the programmer can choose to provide type annotations to the function
argument (as in mapPlus2 ) or provide all the instantiations directly (as in mapPlus3).

def mapPlus2: List[Int] = map((x: Int) => 1 + x, List(1, 2, 3))

def mapPlus3: List[Int] = map[Int, Int](x => 1 + x, List(1, 2, 3))

1We do not use Scala 3 because its approach to type inference [Martres 2023] seems to be a hybrid combination of local type

inference and some other techniques, which have not been formaly studied. Thus Scala 2 type inference remains more

faithful to the original work [Odersky et al. 2001; Pierce and Turner 2000].
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Another more language-dependent solution is to swap the order of two arguments in the
de�nition of map as shown below. Because the type-inference algorithm in Scala proceeds left-to-
right, the type information in the �rst argument helps infer the second one.

def map2[A, B](xs: List[A], f: A => B): List[B] = ...

def map2Plus: List[Int] = map2(List(1, 2, 3), x => 1 + x)

No support for interdependent bounds. The only formalized variant of local type inference sup-
porting bounded quanti�cation that we are aware of is by Pierce and Turner [2000]. However, their
work forbids the inference of type arguments with interdependent bounds because they could not
�nd a complete algorithm that deals with such bounds. Scala 2 does provide some basic support for
interdependent bounds instead of forbidding them, but type checking still fails frequently. This
reveals the di�culty of achieving a complete algorithm that can always succeed in such cases. A
simple example of failing to �nd instantiations of interdependent bounds in Scala is:

def idFun[A, B <: A => A](x: B): A => A = x

def idInt1: Int => Int = x => x

def idInt2 = idFun(idInt1) // fails to type check!

In the above example, A and B are instantiated to ⊥ (i.e. Nothing in Scala) and Int → Int. The
instantiation does not conform to the bounded quanti�cation � ≤ � → � since Int→ Int ≤ ⊥ → ⊥

is not true. This incorrect instantiation found by Scala causes it to reject the program.

No best argument. When the type variable to instantiate appears invariantly in the output type,
but the constraints are not enough to decide a unique instantiation, local type inference fails to
provide any instantiations. Scala still infers a type in such cases, but the type can be meaningless.
For example, the type of id is inferred as ⊥ → ⊥ in Scala. Thus, id cannot be applied further.

def snd[A]: Int => A => A = x => y => y

def id = snd(1)

Preference for uncurried functions. Local type inference prefers a fully uncurried style in poly-
morphic applications to obtain more constraints of type variables to obtain a precise instantiation.
Sometimes, type checking will fail after making the function curried.

def fst1[A, B](x: A, y: B): A = x

def idInt2: Int => Int = fst1(x => x, 4)

def fst2[A, B]: A => B => A = x => y => x

def idInt3: Int => Int = fst2(x => x)(4) // fails to type check!

Inference of > and ⊥. Local type inference can output > and ⊥ directly as a result of constraint
solving, which can often hide possible type errors. Consider:

def fst3[A](x: A, y: A): A = x

def val = fst3(1, true)

The polymorphic function fst3 has type ∀0. 0 → 0 → 0 and 0 is instantiated to > (i.e. Any
in Scala) in fst3(1, true) by Scala. It enables applying the function to two values with di�erent
types, which usually contradicts the intention of specifying two arguments with the same type �.
Inferring ⊥ may allow some programs with other possible type errors to type check. For example:

def fPlus[A](f: A => Int, g: A => Int): A => Int = x => f(x) + g(x)

def useless = fPlus((x: Int) => x + 1, (y: Boolean) => 5)
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The inferred type of useless is ⊥ → Int2. Although the type of fPlus expects two functions of
type � → Int, the application of fPlus in useless provides two functions with di�erent domain
types. In practice, this situation could correspond to a programmer unintentionally providing two
library functions with di�erent types to the function (perhaps because he did not recall the correct
types). Note that the instantiation of A is valid here, but it is unlikely to correspond to what the
programmer would expect.
We should remark that, especially in the presence of downcasts, there are situations where

inference of > and ⊥ can be useful. So, there is also an argument for supporting the inference
of such types. For instance, programmers may wish to build a generic container and performing
downcast when extracting its elements. In the example below, ls is inferred to type List[Any] in
Scala without any annotations.

val ls = List(1, 2, "3")

Disabling the implicit inference of > would require more boilerplate in such cases, as we would
need to provide type annotations or explicit type instantiations. However, for languages without
downcasts, inference of > and ⊥ would have much more limited bene�ts, while hiding many
possible type errors that could be caught by other type inference disciplines (such as Hindley-
Milner). Thus, for languages without downcasts, forbidding inference of > and ⊥ seems quite
reasonable. Moreover, this tension between powerful type inference and early detection of errors
has even led language designers to allow programmers to disable the inference of top types. For
instance, Scala has a �ag -Xlint:infer-any to disable the implicit inference of >.

Higher-rank type inference. The subtyping relation employed in local type inference is basically
the same as �≤ . However, this is restrictive and prohibits type-checking many programs with
higher-rank types. The de�nition of g is valid in Scala 3 (but not in Scala 2, which does not support
higher-rank types), but the application g(k) is still rejected by Scala 3 because it would require ≤∀L
in the subtyping relation (Int → Int) → Int ≤ (∀(0 ≤ Int). 0 → 0) → Int.

def k(f: (Int => Int)) = 1

def g(f: ([A <: Int] => A => A) => Int) = 1

def f = g(k) // fails to type check!

2.3 Key Ideas in our Work

Comparing Local Type Inference with �1≤ . Table 1 shows examples in Section 2.2 that behave

di�erently in �1≤ . With global type inference, �1≤ is capable of dealing with long-distance constraints.

Therefore, �1≤ can type the application examples mentioned in Section 2.2 without annotations,

which fail in local type inference. For instance, the map example works well in �1≤ . In addition, since

�1≤ does not infer > and ⊥, the applications involving fst3 and fPlus fail. Higher-rank polymorphic

examples, such as g, are also accepted. In �1≤ interdependent bounds are not problematic, so the
application of idFun works and �nds the correct instantiation.
A restriction in �1≤ is that it cannot infer instantiations using type variables with monotype

bounds. The following code type checks in Scala, while it is rejected in �1≤ :

def idBnd[A <: Int](x: A) = fst1(x, x)

In �1≤ , an explicit type application (fst1 @0 G G ) is needed, when the instantiation is a type variable

a with the monotype bound like Int. Section 5 shows a variant of �1≤ that can accept this program,
and in general can infer more instantiations, but loses completeness. However, note that if the

2To be precise, here Scala 2 infers Int & Boolean → Int, since it supports intersection types. However, this intersection

type is morally equivalent to ⊥ in Scala: we cannot build a value of that type. In a system without intersection types, we

would expect that ⊥ → Int is inferred.
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Table 1. Examples used in the comparison of local type inference with �1≤

�1≤ program Accepted or not

let map: ∀(0 ≤ >). ∀(1 ≤ >). (0 → 1) → [0] → [1] = ...

in map (_G. G + 1) [1, 2, 3]
3

let idFun: ∀(0 ≤ >). ∀(1 ≤ 0 → 0). 1 → 0 → 0 = Λ0. Λ1 . _G . G ,
idInt: Int → Int = _G . G in idFun idInt

3

let snd: ∀(0 ≤ >). Int → (0 → 0) → 0 → 0 = Λ0. _G . _~. ~

in snd 1
3

let fst3: ∀(0 ≤ >). 0 → 0 → 0 = Λ0. _G . _~. G

in fst3 1 true
7

let fPlus: ∀(0 ≤ >). (0 → Int) → (0 → Int) → Int =

Λ0. _5 . _6. _G . 5 G + 6 G

in fPlus ((_G. G + 1) : Int → Int) ((_~. 5) : Bool → Int)

7

let k: (Int → Int) → Int = _5 . 1,
g: ((∀(0 ≤ Int). 0 → 0) → Int) → Int = _5 . 1 in g k

3

let fst1: ∀(0 ≤ >). ∀(1 ≤ >). 0 → 1 → 0 = Λ0. Λ1 . _G . _~. G

in (Λ0. _G . fst1 G G) : ∀(0 ≤ Int). 0 → 0
7

... in (Λ0. _G . fst1 @0 G G) : ∀(0 ≤ Int). 0 → 0 3

... in (Λ0. _G . fst1 G G) : ∀(0 ≤ >). 0 → 0 3

bound of a is Top in fst1 G G , the implicit instantiation still succeeds because in that case a is
considered to be a monotype.
In what follows we discuss the key ideas and design decisions in �1≤ , starting by motivating its

de�nition of monotypes, followed by other key technical ideas.

Non-syntactic monotypes. Previous works [Dun�eld and Krishnaswami 2013; Odersky and Läufer
1996; Peyton Jones et al. 2007; Zhao and Oliveira 2022] on predicative HRP determine monotypes
syntactically. In particular, they treat all type variables as monotypes. Simply adopting the same
idea in a system extending the subtyping relation in Figure 1 with bounded quanti�cation would
break subtyping transitivity. The reader can look at the subtyping relation in Figure 2, which
provides such an extension and simply assume, for the sake of our argument, that all type variables
are monotypes. A counterexample that illustrates that transitivity does not hold is described next.

Let� = ∀(0 ≤ >). 0, � = 1,� = ∀(2 ≤ 1). 2 → 1 and Ψ = ·, 1 ≤ ∀(2 ≤ 1). 2 → 1. Both Ψ ` � ≤ �

and Ψ ` � ≤ � hold as shown in the following derivations. But Ψ ` � ≤ � is invalid because the
two bounds (> and 1) are not equivalent, which is required by kernel �≤ when comparing bounds.

• Ψ ` � ≤ � :

1 ≤ ∀(2 ≤ 1). 2 → 1 ` 1 ≤ > 1 ≤ ∀(2 ≤ 1). 2 → 1 ` 1 ≤ 1

1 ≤ ∀(2 ≤ 1). 2 → 1 ` ∀(0 ≤ >). 0 ≤ 1
by ≤∀L

• Ψ ` � ≤ � : 1 ≤ ∀(2 <: 1). 2 → 1 ` 1 ≤ ∀(2 <: 1). 2 → 1 by ≤VarTrans

• Ψ ` � 6≤ � : ∀(0 ≤ >). 0 6≤ ∀(2 <: 1) . 2 → 1
The reason is the interplay between rule ≤∀L and ≤VarTrans: type variables are used as mono-

types for instantiation in rule ≤∀L, but they can be transformed into universal types using the
≤VarTrans and used in other subtyping judgments. Similar problems happen if a type variable with
bound ⊥ is used as a monotype. To avoid breaking transitivity, we need to regard type variables
with such bounds as non-monotypes to forbid instantiating such type variables with rule ≤∀L.

Can we then regard type variables with a monotype or > bound as monotypes? For transitivity,
and other essential properties such as type safety and soundness of the algorithmic system, such a
de�nition of monotypes is �ne (as shown in Section 5.1). Sadly, with greedy instantiation, monotype
bounds are still problematic for a di�erent reason. Recall the important property to ensure that
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greedy instantiations always work: Ψ ` g1 ≤ g2 implies g1 = g2. This property is broken if we
treat type variables with a monotype bound as a monotype. The counterexample is obvious,
·, 0 ≤ 1 ` 0 ≤ 1, but 0 ≠ 1. Allowing monotypes to include type variables with bounds other than >

results in an incomplete greedy algorithm. To solve the abovementioned issues, all type variables
with bound other than > are considered non-monotypes, i.e., they cannot be implicitly instantiated
with rule ≤∀L. In other words, our de�nition of monotypes is no longer purely syntactic.

Matching and type-application inference–judgments. An important property that our completeness
result depends on is a subsumption theorem. The proof of the subsumption theorem needs us to
generalize the lemma to all kinds of judgments �rst and then prove them simultaneously. With
many new cases added due to bounded quanti�cation, the proof becomes complex. We develop two
new kinds of judgment, namely matching and type application inference, to disentangle the proof.
The matching judgment is inspired by Siek et al. [2015] to replace the application inference used by
Zhao and Oliveira [2022] and Dun�eld and Krishnaswami [2013]. The type-application inference–
judgment uni�es all the cases with type application and reduces the number of cases in inference
judgments. These two judgments are de�ned independently from checking and inference judgments,
and their metatheory can be established independently. With the help of these two judgments and
their independently proved metatheory, our �nal generalized lemma for subsumption only requires
a 2-fold mutual induction with much fewer cases rather than a potential 4-fold mutual induction.

Polytype splitting and decidability. Previous works on type inference for implicit HRP [Dun�eld
and Krishnaswami 2013; Zhao and Oliveira 2022; Zhao et al. 2019] adopt the following (simpli�ed)
rule when comparing an existential (uni�cation) variable with an arrow type in subtyping: split an
existential variable into two fresh ones to solve the domain and codomain type separately.

Û ≤ � → � reduces to Û1 → Û2 ≤ � → � when Û ∉ �+ (� → �)

This rule poses di�culties in proving decidability because it increases the number of existential
variables by one without decreasing any other measures instantly. To solve this issue, previous
work employs concepts such as instantiation judgments Û ≤ � and � ≤ Û and prove (1) each
reduction procedure of these instantiation judgments is decidable because the type size decreases;
(2) after an instantiation judgment is fully reduced, the overall measure will also decrease. This
intermediate decision procedure, that each instantiation judgment will reduce the overall measure
after an inde�nite number of steps, creates complexity in the decidability proof.
We observe that it is unnecessary to split the existential variable when � → � is a monotype.

Instead, we can always solve Û using the monotype� → � directly, i.e., substitute every occurrence
of Û with � → �, and split only when � → � is a polytype. This modi�cation, named polytype

splitting, allows us to develop a measure | · |→ to track the maximum possible number of splits of
a type statically. With the help of this new measure, the entire measure of our algorithm always
decreases after a constant number of reduction steps, so the proof of decidability is greatly simpli�ed.
Another challenge is to combine the measure used to prove the decidability of kernel �≤ with

that of worklist algorithms. The weight measure for �≤ [Pierce 2002], is not compatible with the
existential variables in worklists: the weight could increase arbitrarily after solving an existential
with a monotype. To address this challenge, we develop a lexicographic group of four measures on
the worklist. The �rst three in the group are (almost) una�ected by existential-variable solving,
and the last one is a simpli�ed version of the weight.

Worklist substitution. A complication that arises in HRP type-inference algorithms is that exis-
tential (uni�cation) variables sometimes need to have their scope widened. However, changing
the scope of an existential variable may require changing the scope of other existential variables
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recursively. To help with this process and simplify the type-inference algorithm, we employ a
revised substitution procedure to deal with the variable insertion, removal, and worklist reordering
after solving an existential variable with another monotype. The rules and notations for the type-
inference algorithm can be presented more concisely and clearly since the scope management for
existential variables is encapsulated within the worklist substitution. The lemmas related to these
cases in the soundness, completeness, and decidability proof can also be stated in a uni�ed manner
to provide more intuition on the properties of our system.

3 DECLARATIVE SYSTEM

This section introduces a declarative type system for �1≤ , which serves as a speci�cation for the
algorithmic version that will be presented in Section 4. The type system extends Zhao and Oliveira
[2022]’s �4≤ type system by adding bounded quanti�cation [Cardelli and Wegner 1985]. Several
important properties of the subtyping and typing relation are stated and discussed, especially the
transitivity of subtyping and the subsumption of typing, which are signi�cantly complicated by
the addition of bounded quanti�cation.

3.1 Syntax, Monotypes, and Well-Formedness

Type variables 0, 1

Types �, �,� ::= 1 | 0 | ∀(0 ≤ �). � | � → � | > | ⊥

Expressions 4, C ::= G | () | _G. 4 | 41 42 | (4 : �) | 4 @� | Λ(0 ≤ �). 4 : �
Typing contexts Δ ::= · | Δ, G : � | Δ, 0 ≤ �

Subtyping contexts Ψ ::= Δ | Ψ, 0 . �

The syntax of �1≤ is shown above. Compared to �4≤ , universal types ∀(0 ≤ �). � and type
abstractions Λ(0 ≤ �). 4 : � now incorporate a bound � to support bounded quanti�cation. Type
application (4 @�) is inherited from �4≤ . The remaining expression and type syntax is standard.

Di�erently from �4≤ , there are two kinds of contexts in �1≤ : typing context Δ and subtyping
context Ψ. This change is to enforce some expected invariants. Firstly, subtype variables should
not occur in typing and typing contexts. Secondly, only subtype variables will be added to the
context in subtyping. Thus, a subtyping context should be a typing context pre�x followed by
a collection of subtype variables. Consequently, the bound of a type variable cannot depend on
a subtype variable. Despite having no major consequences for the formalization in terms of the
properties of the system, none of these invariants are enforced in �4≤ . In contrast, they are enforced

in �1≤ . With this new design, �1≤ distinguishes type variables from subtype variables by the entries
in the contexts (0 ≤ � or 0 . �) rather than by a syntactic distinction of 0 and 0̃ as in �4≤ . The
entries also keep track of the bound for (sub)type variables. For convenience, we sometimes use the
notation 0 <

' � to represent both 0 ≤ � and 0 . � entries in subtyping contexts. The key syntactic
di�erences to �4≤ are marked in gray.

Monotypes. The de�nition of monotypes plays a central role in �1≤ , and it requires signi�cant
changes in comparison to previous calculi with predicative implicit instantiation [Dun�eld and
Krishnaswami 2013, 2019; Odersky and Läufer 1996; Peyton Jones et al. 2007]. Monotypes are no
longer de�ned syntactically due to the presence of bounds. Instead, we need a dedicated judgment
to decide whether a type variable is a monotype or not: only unbounded type variables (the upper
bound is>) are allowed. The newmonotype relation needs to take the context Ψ as input to perform
the bound lookup. The remaining cases of the monotype de�nition are standard, as shown in the
top part of Figure 2. For brevity, we will use conventional symbols g, f to represent monotypes in
Ψ `< g and sometimes omit Ψ when it is clear what the context is.
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Ψ `< � A is a monotype

Ψ `< 1
MUnit

Ψ `< � Ψ `< �

Ψ `< � → �
M→

0 ≤ > ∈ Ψ

Ψ `< 0
MTVar

Ψ ` � ≤ � A is a subtype of B

Ψ ` 1 ≤ 1
≤Unit

Ψ ` � ≤ >
≤>

Ψ ` ⊥ ≤ �
≤⊥

0 <
' � ∈ Ψ

Ψ ` 0 ≤ 0
≤Var

0 <
' � ∈ Ψ Ψ ` � ≤ �

Ψ ` 0 ≤ �
≤VarTrans

Ψ ` �1 ≤ �1 Ψ ` �2 ≤ �2

Ψ ` �1 → �2 ≤ �1 → �2

≤→

Ψ `< g Ψ ` g ≤ � Ψ ` [g/0]� ≤ � � is not a ∀ type

Ψ ` ∀(0 ≤ �). � ≤ �
≤∀L

Ψ ` �1 ≤ �2 Ψ ` �2 ≤ �1 Ψ, 0 . �2 ` �1 ≤ �2

Ψ ` ∀(0 ≤ �1). �1 ≤ ∀(0 ≤ �2). �2

≤∀

Fig. 2. Declarative Monotype and Subtyping

Well-formedness. Well-formedness (listed in the extended version of the paper) ensures the well-
scopedness of binders. After adding bounded quanti�cation, we need to check the well-formedness
of the bounds in certain rules. We also inherit the free-variable checks in Zhao and Oliveira [2022]
to ensure that the polymorphic type ∀(0 ≤ �). � is indeed polymorphic. It is worth noting that if
the type variable appears in the bound of a nested universal type, it also passes the free-variable
check, i.e., the type ∀(0 ≤ >). ∀(1 ≤ 0) . 1 → 1 is regarded as a well-formed type in �1≤ .

3.2 Subtyping

Figure 2 shows the rules of subtyping relation. Most rules are inherited from �4≤ . Rules ≤>, ≤⊥
and ≤→ are standard subtyping rules for calculi with >, ⊥ and function types. Rule ≤Var is
the re�exivity rule for (sub)type variables. The remaining rules are key to supporting bounded
quanti�cation. Rule ≤∀L states that a universal type is a subtype of another (non-universal) type �
as long as we can �nd a monotype g that satis�es the bound �, such that the instantiated body is
the subtype of� . This rule di�ers from previous rules in the literature [Dun�eld and Krishnaswami
2013; Zhao and Oliveira 2022] in that the monotype is not only required to be well-formed but
also a subtype of the bound �. By checking that Ψ ` g ≤ �, we prevent incorrect instantiations
that do not satisfy the bounds. Rule ≤∀ states that two universal types are subtypes if their bodies
are subtypes and their bounds are mutual subtypes of each other. This rule is adopted from the
equivalent type variant of kernel �≤ [Pierce 2002; Zhou et al. 2023] to support more �exible bound
comparison. Since we include bottom types, the subtyping relation is not antisymmetric like the
original �≤ , e.g., a type variable with a bottom bound and the bottom type are subtypes of each
other. Thus, the rule used here is more adequate. The extra condition “� is not a ∀ type” in rule
≤∀L ensures that rule ≤∀ always takes priority when both sides are universal types. Finally, rule
≤VarTrans allows comparing a (sub)type variable with a type � as long as its bound � can be
compared with this type. It is a standard rule in a type system with bounded quanti�cation. The
re�exivity and transitivity property hold for this subtyping relation:

Theorem 3.1 (Subtyping Reflexivity). Given Ψ ` A, Ψ ` A ≤ A.

Theorem 3.2 (Subtyping Transitivity). Given Ψ ` A, Ψ ` B, and Ψ ` C, if Ψ ` A ≤ B, and

Ψ ` B ≤ C then Ψ ` A ≤ C.
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3.3 Typing

The top part of Figure 3 shows the declarative type system with the checking and inference judg-
ments. Most rules are standard in existing bidirectional type systems with higher-rank predicative
type inference [Dun�eld and Krishnaswami 2013]. However, there are a few di�erences.
Firstly, we do not include a rule that checks against a universal type:

Δ, 0 ` 4 ⇐ �

Δ ` 4 ⇐ ∀0. �

Here, we omit bounded quanti�cation for a clearer comparison with previous work. Such a rule is
common in previous work [Dun�eld and Krishnaswami 2013; Zhao and Oliveira 2022]. It allows
implicit de�nitions of polymorphic functions, where type variables do not need to be explicitly
bound at the term level. We drop this checking rule because it seems more appropriate for type
systems where the order of bound universal variables is irrelevant, which is not the case in �1≤ .
Consider the following checking judgment that holds with the above rule:

· ` Λ0.(Λ1 .(_G. _~. .G) : ∀1 .0 → 1 → 0) : ∀0.∀1 .0 → 1 → 0 ⇐ ∀1 .∀0.0 → 1 → 0

However, ∀1 .∀0.0 → 1 → 0 is not a subtype of ∀0.∀1 .0 → 1 → 0 according to the subtyping rela-
tion since the order of the binders matters in �1≤ . In �1≤ , explicit type abstractions (Λ(0 ≤ �). 4 : �)
are the only way to de�ne polymorphic functions, aligning better with calculi with local type
inference and with languages like Scala or Java. The consequence of removing this rule is that
lambda expressions annotated with a forall type are no longer accepted, e.g., _G. G : ∀0. 0 → 0 .
Programmers must explicitly convert such expressions to Λ expressions. Since explicit type abstrac-
tion is more powerful than the implicit one by allowing scoped type variables [Peyton Jones and
Shields 2004; Zhao et al. 2019], no expressivity is lost.

Secondly, rule⇐→> is added to check a lambda expression against >. In �4≤ , there is a rule that
allows any well-formed expression to check against the top type. So, some peculiar expressions,
which seem nonsensical, e.g. () () : >, can also be type checked. The �4≤ rule is type safe, since no
information can be extracted from an expression annotated with >. However, we believe it is more
intuitive to completely reject any nonsensical expressions in �1≤ . Therefore, in rule ⇐→>, we use
the greatest function type in the subtyping lattice (⊥ → >) to type-check the lambda expression.
This allows us to prevent nonsensical lambda expressions from being accepted when checked
against >. Checking the remaining expressions against >, including (), G , 4 : �, Λ(0 ≤ �). 4 : �,
and 41 42 is now handled by the subsumption rule.
Finally, there are two new judgments. The inference of application depends on the matching

judgment Δ ` � ⊲� → � . Note that this judgment di�ers from the judgment used in �4≤ or Dun�eld
and Krishnaswami [2013]. In addition, the inference of type applications is uni�ed into a single
rule ⇒TApp and depends on the new type-application inference–judgment Δ ` � ◦ � ⇒⇒ � . Both
of these judgments are discussed next.

Matching. The matching judgment Δ ` � ⊲� → � in Figure 3 states that a type� can be regarded
as an arrow type � → � , and thus a term of type � can be applied to another term of type � and
have the result type be � . It was �rst proposed by Siek et al. [2015] and extended to polymorphic
types [Xie et al. 2019] by guessing instantiations until reaching an arrow type. The rules ⊲∀ and
⊲→ are similar to those in Xie et al. [2019]. In rule ⊲∀, a monotype g that satis�es the bound is
guessed, and the judgment is applied to the instantiated universal type recursively.
Rule ⊲⊥ and ⊲Var are newly added to support ⊥ and bounded quanti�cation. Since a term of

type ⊥ can be applied to any well-typed term, and the result type is still ⊥, ⊥ should match > → ⊥,
the least function type in the subtyping lattice, as stated in ⊲⊥. With bounded quanti�cation, it is
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Δ ` 4 ⇔ � 4 is checked against/infers �

(G : �) ∈ Δ

Δ ` G ⇒ �
⇒Var

Δ ` 4 ⇒ � Δ ` � ≤ � Δ ` �

Δ ` 4 ⇐ �
⇐Sub

Δ ` 4 ⇐ �

Δ ` (4 : �) ⇒ �
⇒Anno

Δ `< f → g Δ, G : f ` 4 ⇐ g

Δ ` _G . 4 ⇒ f → g
⇒→Mono

Δ, G : � ` 4 ⇐ � Δ ` �

Δ ` _G . 4 ⇐ � → �
⇐→

Δ, G : ⊥ ` 4 ⇐ >

Δ ` _G . 4 ⇐ >
⇐→>

Δ ` () ⇒ 1
⇒Unit

Δ, 0 ≤ � ` 4 ⇐ � Δ ` � 0 ∈ FV(�)

Δ ` Λ(0 ≤ �). 4 : � ⇒ ∀(0 ≤ �). �
⇒Λ

Δ ` 41 ⇒ � Δ ` � ⊲ � → � Δ ` 42 ⇐ �

Δ ` 41 42 ⇒ �
⇒App

Δ ` 4 ⇒ � Δ ` � ◦ � ⇒⇒ � Δ ` �

Δ ` 4 @� ⇒ �
⇒TApp

Δ ` � ⊲ � → � A matches an arrow type � → �

Δ ` ⊥ ⊲ > → ⊥
⊲⊥

Δ ` � → � ⊲� → �
⊲→

Δ ` g ≤ � Δ `< g Δ ` [g/0]� ⊲� → �

Δ ` ∀(0 ≤ �). � ⊲� → �
⊲∀

0 ≤ � ∈ Δ Δ ` � ⊲� → �

Δ ` 0 ⊲� → �
⊲Var

Δ ` � ◦ � ⇒⇒ � A type-applied to B infers C

Δ ` ⊥ ◦� ⇒⇒ ⊥
◦⇒⇒⊥

Δ ` � ≤ �

Δ ` ∀(0 ≤ �). � ◦� ⇒⇒ [�/0]�
◦⇒⇒∀

0 ≤ � ∈ Δ Δ ` � ◦� ⇒⇒ �

Δ ` 0 ◦� ⇒⇒ �
◦⇒⇒Var

Fig. 3. Matching and Type-Application Inference.

also possible for type variables to match an arrow type. This case is dealt with by rule ⊲Var, which
states that as long as the bound of a type variable can match an arrow type, the type variable itself
can match this arrow type.

The key reason to use matching instead of the application-inference judgment, Δ ` � • 4 ⇒⇒ �

due to Dun�eld and Krishnaswami [2013], is that the matching judgment is a pure type-level
relation and, thus, independent of the checking and inference rules. On the contrary, the application
inference judgment, which is also used in �4≤ , is mutually de�ned together with the checking
and inference judgments. Unfortunately, in a system with bounded quanti�cation, this becomes
problematic as properties such as subsumption become much more entangled with other properties,
making proofs di�cult. By decoupling matching from inference and checking, we are able to prove
many properties for matching independently, greatly simplifying our proofs.

Type application inference. The type-application inference–judgment Δ ` � ◦ � ⇒⇒ � at the
bottom of Figure 6 states that a type � can be regarded as a universal or ⊥ type so that it can be
type-applied to type �, and the result type is� . This judgment generalizes the two rules⊥@� ⇒ ⊥

and ∀0.� @� ⇒ [�/0]� used by Zhao and Oliveira [2022]. It can be easily extended to support
new cases, i.e. rule ◦⇒⇒Var, that is added due to bounded quanti�cation. This rule allows type-level
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variables to be type-applied when their bounds can be type-applied. Type-application inference is
also a pure type-level relation independent of checking and inference rules.

Checking subsumption. An important property that holds for the typing relation is:

Theorem 3.3 (Checking Subsumption). Given ∆ ` B, if ∆ ` e ⇐ Aand∆ ` A ≤ B, then ∆ ` e ⇐ B.

3.4 Metatheory

In this section, we discuss the most interesting aspects of the metatheory of the declarative type
system. In particular, we discuss the challenges that emerge after the introduction of bounded
quanti�cation.

Subtyping Transitivity. The proof of subtyping transitivity proceeds by induction on the �rst
subtyping relation. The tricky case is the ≤∀ rule, i.e. Ψ ` ∀(0 ≤ �1). � ≤ ∀(0 ≤ �2). � ≤ � . When
� is also a universal type ∀(0 ≤ �3). �

′, a subtyping narrowing lemma is required to replace the
bound �2 with the equivalent type �3 in the ≤∀ derivation Ψ, 0 . �2 ` � ≤ �. This is similar to the
transitivity proof in the algorithmic version of full �<: without a built-in transitivity rule [Pierce
2002]. When � is not a universal type, with the rule ≤∀L, there exists g s.t. Ψ ` g ≤ �3 and
Ψ ` [g/0]� ≤ � , and thus we need a subtyping stability lemma to substitute 0 with g in the above
≤∀ derivation. Both the narrowing and stability lemmas are mutually dependent on the transitivity
lemma and must be proven simultaneously. In the proofs of both lemmas, the transitivity has to be
applied when � is a subtype variable due to the rule ≤VarTrans.

Lemma 3.4 (Subtyping Narrowing and Stability). Given all types and contexts well-formed,

(1) If Ψ1, a . D,Ψ2 ` A ≤ B and Ψ1 ` C ≤ D, then Ψ1, a . C, Ψ2 ` A ≤ B.

(2) If Ψ1, a . D,Ψ2 ` A ≤ B and Ψ1 ` C ≤ D, then Ψ1, [C/a]Ψ2 ` [C/a]A ≤ [C/a]B.

Subsumption. To prove the subsumption lemma, we �rst prove the subsumption lemmas for
matching and the type-application inference–judgment independently.

Lemma 3.5 (Matching and Type-Application Inference–Subsumption). Given all types and

contexts well-formed,

(1) If ∆ ` A ⊲ B → C and∆ ` A′ ≤ A, then∃B′,C′ s.t.Δ ` �′
⊲�′ → �′ and∆ ` B′ → C′ ≤ B → C.

(2) If ∆ ` A ◦ B ⇒⇒ C and ∆ ` A′ ≤ A, then ∃C′ s.t. ∆ ` A′ ◦ B ⇒⇒ C′ and ∆ ` C′ ≤ C.

With the above two lemmas proved, we then adopt the proof technique used by Zhao et al. to
prove the subsumption lemma, which generalizes the subsumption theorem by (1) extending the
property to both checking and inference judgments; (2) introducing a sub-context relation Δ

′
<: Δ.

The sub-context is de�ned on typing context only and requires the bound of corresponding type
variables in Δ and Δ

′ to be the same.

Δ
′
<: Δ Sub-context

· <: ·

Δ
′
<: Δ

Δ
′, 0 ≤ � <: Δ, 0 ≤ �

Δ
′
<: Δ Δ ` � ≤ �

Δ
′, G : � <: Δ, G : �

The most general form of the subsumption lemma is:

Lemma 3.6 (Checking and Inference Subsumption). Given all contexts wellformed and ∆′
<: ∆,

(1) if ∆ ` e ⇐ A, ∆ ` A′, and ∆ ` A ≤ A′, then ∆′ ` e ⇐ A′;

(2) if ∆ ` e ⇒ A, then ∃A′ s.t. ∆ ` A′ ≤ A and ∆′ ` e ⇒ A′.
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It is not hard to observe that if Δ′
<: Δ, any matching and type application-judgment that holds

in Δ also holds in Δ
′ and vice versa since the changes in the bound of variables G do not a�ect these

two pure type-level judgments. Thus, the subsumption proved for matching and type-application
inference can be used in the proof this generalized lemma with the premise Δ′

<: Δ.
The form of our subsumption lemmas is simpler than that used by Dun�eld and Krishnaswami

[2013]; Zhao and Oliveira [2022]. The primary source of simpli�cation comes from the use of the
matching judgment, inspired by the work of [Xie et al. 2019]. The metatheory of the matching
judgment can be developed independently of checking and inference. We initially tried to use the
same approach as Zhao and Oliveira, but the proof became too intricate due to several mutual
dependencies between various lemmas.

Type Safety and Completeness to kernel �≤ . The type safety of our type system is derived via an
elaboration to System � by taking a coercive interpretation [Breazu-Tannen et al. 1991]: a proof of
subtyping relation ? : � ≤ � is elaborated into a term 4 : |�| → |� | (| · | indicates type translation).
The translation of types and contexts to mitigate the syntax gap is adopted from Curien and Ghelli
[1992]. Speci�cally, ∀(0 ≤ �). � is translated to ∀0. (0 → |� |) → |�|, and 0 ≤ � in Ψ is translated
to two entries 0 and 2 : |0 | → |� | in |Ψ|. We also prove that all kernel �≤ programs can type check
in our system after adjusting the annotations. The extended version of the paper contains the
detailed de�nition of elaboration, translation, and annotation decoration, and discussion.

Theorem 3.7 (Type Safety by Elaboration to System � ). If ∆ ` e ⇔ A ↩→ 4′ then

|∆| `F e′ : |A|

Theorem 3.8 (Completeness w.r.t. kernel �≤ ). If ∆ `F≤ e : A then ∃e′, s.t. bec = be′c, i.e., e and

e′ only di�er on annotations, and ∆ ` e′ ⇒ A.

4 ALGORITHMIC SYSTEM

This section introduces an algorithmic system that implements the speci�cation of �1≤ presented in
Section 3 using the worklist approach [Zhao et al. 2019]. This algorithmic system is proven to be
sound and complete with respect to the declarative system and is decidable.

4.1 Syntax, Well-Formedness, and Notation

Type variables 0, 1 Existential variables Û, V̂

Algorithmic types �, �,� ::= 1 | 0 | ∀(0 ≤ �). � | � → � | > | ⊥ | Û

Judgment l ::= � ≤ � | 4 ⇐ � | 4 ⇒0 l | � ◦ � ⇒⇒0 l | � ⊲0,1 l |

� → � • 4 ⇒⇒0 l

Algorithmic worklist Γ ::= · | Γ, 0 <
' � | Γ, Û | Γ, G : � | Γ  l

Compared with the declarative syntax, the syntax of algorithmic expressions remains unchanged.

The syntax of algorithmic types is extended with a new sort of variable: existential variables (Û, V̂).
Existential variables are used as placeholders for monotype guesses in several rules and will be
uni�ed with another monotype during the reduction of the worklist. Existential variables are
also regarded as monotypes. The (sub)type variables in the worklist are modi�ed to incorporate
a bound, similar to the modi�cations made to the declarative context. The syntactic di�erences
to �4≤ are marked with gray shades. A worklist Γ is an ordered collection of both (type) variable
declarations (with bindings) and judgments, so it combines traditional contexts and judgment into a
single sort. The ordered nature helps with precise scope management, which simpli�es mechanical
formalization. Unlike the declarative system, there is only one kind of worklist that deals with both
subtyping and typing judgments.
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{g/Û}Γ Substitute Û by g in Γ

{g/Û}(Γ, Û) =1 Γ

{g/Û}(Γ, V̂) =2 {g/Û}Γ, V̂ when V̂ ∉ �+ (g)

{g/Û}(Γ1, Û, Γ2, V̂) =3 {g/Û}(Γ1, V̂, Û, Γ2) when V̂ ∈ �+ (g)

{g/Û}(Γ, 1 <
' �) =4 {g/Û}Γ, 1 <

' [g/Û]� when 1 ∉ �+ (g)

{g/Û}(Γ, G : �) =5 {g/Û}Γ, G : [g/Û]�
{g/Û}(Γ  l) =6 {g/Û}Γ  [g/Û]l

Fig. 4. Worklist Substitution

Judgments. There are six kinds of judgments in the algorithmic system. Four of them are inherited
from �4≤ : subtyping (� ≤ �), checking (4 ⇐ �), inference (4 ⇒0 l) and type-application inference
(� ◦ � ⇒⇒0 l). The matching judgment (� ⊲0,1 l) and its accompanying application inference
judgment (� → � • 4 ⇒⇒0 l) are new. The syntax of subtyping and checking judgments is
simple since the result of their reduction is either success or failure. The syntax of inference,
type-application inference, matching, and application-inference judgments is represented using a
continuation-passing style [Zhao et al. 2019] (i.e., with a subsequent judgment l and a subscript
type variable 0). These judgments return a type that will be used in subsequent judgments l , but
the type may still be unknown when l is created, so the type variable 0 serves as a placeholder
in the subsequent judgment. These placeholders will be substituted to a concrete type once it is
known, and the subsequent judgment can then be processed.

Miscellaneous rules and notations.

• There are several well-formedness judgments. Firstly, ` Γ checks that worklist Γ is well-formed.
Secondly, Γ ` � checks that the type� is well-formed in Γ. Finally, Γ ` l checks that judgment l
is well-formed in Γ. For the worklist, since we only have one syntax category, in order to capture
the similar invariance in the declarative system achieved by the distinctions between subtyping
and typing contexts discussed in Section 3, we de�ne two sets of well-formedness rules. Each set
of rules themselves is rather standard. All the detailed well-formedness rules can be found in the
extended version of the paper.

• Worklist reduction Γ −→ Γ
′: pops the last entry in the worklist Γ, processes according to the

rules, and possibly pushes multiple simpli�ed judgments back to get a new worklist Γ′. Γ −→∗
Γ
′

denotes multiple reduction steps, and a worklist Γ is accepted by the algorithm i� the worklist
processes all the work until nothing is left (Γ −→∗ ·).

• Worklist substitution {g/Û}Γ, replaces all the references to the existential variable Û in the
worklist Γ with a monotype g and removes the existential variable Û . The existential variables
in g need to be moved before the original position of Û to maintain the well-formedness of the
worklist. Figure 4 shows the algorithmic procedure. It traverses the worklist from head to tail
until the declaration of Û is reached. Rule 1 is the base case where the declaration of Û is reached,
and Û is removed to �nish the worklist substitution. Rules 2 and 3 deal with reaching existential

variables di�erent from Û . If V̂ does not appear in g , we continue the substitution on the remaining

worklist. If V̂ appears in g , we need to move V̂ to the front of Û to keep the well-formedness of g
in the remaining substitution. Rule 4 deals with reaching (sub)type variables. Unlike existential
variables, (sub)type variables cannot be moved [Dun�eld and Krishnaswami 2013]. So, we need
to check that the current (sub)type variable does not appear in g . Rules 5 and 6 deal with variables
and judgments by replacing every reference to Û with g and continuing on the remaining worklist.
An equivalent tail-recursive version can be found in the extended version of the paper.
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4.2 Algorithmic Rules

All the reduction rules are de�ned in a single relation but for clarity of presentation, we separate
them into three parts: garbage collection, subtyping, and typing. Compared with the declarative
rules, there are two general di�erences in the algorithmic reduction rules:
• All the well-formedness checks of types in the declarative rules are dropped since we instead
require the input worklist to be well-formed, which guarantees that the algorithm only deals
with well-formed expressions and type annotations. Note that every reduction rule preserves
the well-formedness of the worklist.

• In the declarative system, if a declarative rule has multiple judgments as premises, they are
checked separately. These judgments are pushed into a single worklist and reduced jointly in
the algorithmic system. The order of pushing these judgments is deterministic for each rule,
though the order may sometimes make no di�erence.

Garbage Collection (Rules 1-3). The scoping mechanism of the ordered worklist ensures that if
the worklist is well-formed, these variables can never be referred to by any entries that appear
before them. Thus, it is safe to remove them if they are the last entry in the worklist.

Γ, 0 ≤ � −→1 Γ Γ, Û −→2 Γ Γ, G : � −→3 Γ

The garbage collection of (type) variables is intuitive. The garbage collection of the existential
variable Û means that this existential variable is under-constrained and can be solved to any
monotype (and trivially, to 1).

Subtyping (Rules 4-16, Figure 5). These 13 rules can be classi�ed into two categories, where the
�rst contains rules 4-12, and the second contains rules 13-16.

Rules in the �rst category are similar to their declarative counterparts. Rule 6 is added since we
have a new sort of variables in the algorithmic system. The side conditions � ≠ >, � ≠ 0 and� ≠ >

in rule 7 prevent the overlapping with rules 5, 8 and 14, respectively. The most signi�cant changes
are in rule 11, where an existential variable Û is introduced instead of guessing the monotype g
instantiation in its declarative counterpart rule ≤∀L. The subtyping judgment Ψ ` g ≤ �, which
tests if the monotype satis�es the bounds, is also transformed accordingly to Û ≤ �, then added
to the worklist. In rules 10, 11, and 12, multiple new entries are pushed back to the worklist. The
side-condition� ≠ > in rule 11 prevents the overlapping with the rule 8. Though in rule 12, �1 and
�2 are pushed back after 1 . �1, the solving scope of the existential variables in them does not
change because subtype variables are not monotypes, and cannot be used in implicit instantiation.
Another subtle di�erence is that the idea of “equivalent type” is enriched in rule 12 compared to rule
≤∀ in that two types that contain existential variables can also be equivalent but not syntactically
equal, e.g., Û1 → 1 and (1 → 1) → Û2 with Û1 and Û2 �nally solved to 1 → 1 and 1.

The rules in the second category solve the existential variables. This set of rules is quite di�erent
from those used in previous work [Zhao and Oliveira 2022; Zhao et al. 2019] where: (1) they only
solve existential variables to a basic monotype (i.e., another existential variable, type variable,
and unit type); (2) they always split an existential variable into two fresh existential variables
when it is compared with an arrow type. This new set of rules solves existential variables to
arbitrary monotypes by employing polytype splitting: existential variables are only split into two
when compared with a polytype (or non-monotype) arrow type. Since Û1 and Û2 are fresh, the
consequence of the worklist substitution in rules 15 and 16 is equivalent to inserting Û1, Û2 before
Û , replacing every reference to Û in Γ by Û1 → Û2, and removing Û . The occurs-check condition
in all four rules prevents the possible non-termination of the algorithm caused by judgments like
Û ≤ 1 → Û . In rules 13 and 14, this check also prevents overlapping with rule 6 since Û ≤ Û fails
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Γ  1 ≤ 1 −→4 Γ

Γ  0 ≤ 0 −→5 Γ

Γ  Û ≤ Û −→6 Γ

Γ  0 ≤ � −→7 Γ  � ≤ �

Γ  � ≤ > −→8 Γ

Γ  ⊥ ≤ � −→9 Γ

Γ  �1 → �2 ≤ �1 → �2 −→10 Γ  �2 ≤ �2  �1 ≤ �1

Γ  ∀(0 ≤ �). � ≤ � −→11 Γ, Û  Û ≤ �  [Û/0]� ≤ �

Γ  ∀(0 ≤ �1). �1 ≤ ∀(0 ≤ �2). �2 −→12 Γ, 0 . �1  �2 ≤ �1  �1 ≤ �2  �1 ≤ �2

Γ  Û ≤ g −→13 {g/Û}Γ

Γ  g ≤ Û −→14 {g/Û}Γ

Γ  Û ≤ � → � −→15 {Û1 → Û2/Û}(Γ, Û1, Û2)  Û1 → Û2 ≤ � → �

Γ  � → � ≤ Û −→16 {Û1 → Û2/Û}(Γ, Û1, Û2)  � → � ≤ Û1 → Û2

when 0 <
' � ∈ Γ ∧� ≠ > ∧ � ≠ > ∧ � ≠ 0

when � is not a ∀ type ∧� ≠ >

when Γ `< g ∧ Û ∉ �+ (g)

when Γ `< g ∧ Û ∉ �+ (g) ∧ g ≠ V̂

when Γ 0
< (� → �) ∧ Û ∉ �+ (� → �)

when Γ 0
< (� → �) ∧ Û ∉ �+ (� → �)

Fig. 5. Reduction Rules of Algorithmic Subtyping

such a check. The side condition g ≠ V̂ in rule 14 ensures that rule 13 takes priority when comparing
two di�erent existential variables. Compared with the rules of �4≤ , the new formulation has fewer
rules and simpli�es the proof of decidability, which will be discussed in detail in the Section 4.3.

Typing (Rules 17-36, Figure 6). Rules 17-20 deal with checking, rules 21-26 deal with inference,
rules 28-32 deal with application inference and rules 34-36 deal with type inference judgments.
Rules 17-19 are the algorithmic counterparts of ⇐Sub, ⇐→ and ⇐→>. The premise of the

inference judgment in ⇐Sub is modi�ed to the continuation-passing style. The side condition
4 ≠ _G . 4′ in 17 prevents the overlapping with the rule 19. Rule 20 is added for existential variables.
An existential variable can be used to check a lambda expression i� it can �nally be resolved to
an arrow type, so we split it into two fresh existential variables and process the worklist with the
worklist substitution.

Rules 21-27 are the algorithmic counterparts of⇒Var,⇒Anno,⇒Λ,⇒Unit,⇒App,⇒TApp and
⇒→Mono. Rules 21-24 are the base cases where the type is fully determined from the expression,
so we replace the placeholder 0 in l with the type. Rules 22 and 23 also push 4 ⇐ � to the
worklist to check the expression 4 has type �. Rules 25 and 26 infer the result of (type) application
by inferring the type of 41 and leaving the remaining work to matching and (type) application-

inference judgments. Rule 27 creates two fresh existential variables Û , V̂ to solve the unknown

monotype of the lambda expression by replacing the placeholder 0 with Û → V̂ in l and checking

the body against V̂ .
Rules 28-31 are the algorithmic counterparts of ⊲→, ⊲∀, ⊲⊥, and ⊲Var. Rules 28 and 29 are two

base cases where an arrow type is known (by viewing ⊥ as > → ⊥). The placeholder 0, 1 in l

is then replaced with the domain and codomain of this known arrow type. The modi�cation of
rule 30 of introducing an existential variable Û is similar to that of rule 11. This Û will �nally be
uni�ed with a monotype that satis�es the bound. Rule 32 is added for existential variables. Since
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Γ  4 ⇐ � −→17 Γ  4 ⇒0 0 ≤ � when 4 ≠ _G . 4′

Γ  _G. 4 ⇐ � → � −→18 Γ, G : �  4 ⇐ �

Γ  _G . 4 ⇐ > −→19 Γ, G : ⊥ ` 4 ⇐ >

Γ  _G. 4 ⇐ Û −→20 {Û1 → Û2/Û}(Γ, Û1, Û2  _G . 4 ⇐ Û)

Γ  G ⇒0 l −→21 Γ  [�/0]l when G : � ∈ Γ

Γ  4 : � ⇒0 l −→22 Γ  [�/0]l  4 ⇐ �

Γ  (Λ(0 ≤ �). 4 : �) ⇒1 l −→23 Γ  ( [∀(0 ≤ �). �/1]l), 0 ≤ �  4 ⇐ �

Γ  () ⇒0 l −→24 Γ  [1/0]l

Γ  41 42 ⇒0 l −→25 Γ  41 ⇒1 (1 ⊲2,3 (2 → 3 • 42 ⇒⇒0 l))

Γ  4 @� ⇒0 l −→26 Γ  4 ⇒1 (1 ◦� ⇒⇒0 l)

Γ  _G . 4 ⇒0 l −→27 Γ, Û, V̂  ( [Û → V̂/0]l), G : Û  4 ⇐ V̂

Γ  � → � ⊲0,1 l −→28 Γ  [�/0, �/1]l

Γ  ⊥ ⊲0,1 l −→29 Γ  [>/0,⊥/1]l

Γ  ∀(0 ≤ �) . � ⊲0,1 l −→30 Γ, Û  Û ≤ �  [Û/0]� ⊲0,1 l

Γ  0 ⊲1,2 l −→31 Γ  � ⊲1,2 l when 0 ≤ � ∈ Γ

Γ  Û ⊲1,2 l −→32 {Û1 → Û2/Û}(Γ, Û1, Û2  Û ⊲1,2 l)

Γ  � → � • 4 ⇒⇒0 l −→33 Γ  [�/0]l  4 ⇐ �

Γ  ∀(1 ≤ �). � ◦� ⇒⇒0 l −→34 Γ  � ≤ �  [( [�/1]�)/0]l

Γ  ⊥ ◦� ⇒⇒0 l −→35 Γ  [⊥/0]l

Γ  0 ◦ � ⇒⇒0 l −→36 Γ  � ◦ � ⇒⇒0 l when 0 ≤ � ∈ Γ

Fig. 6. Reduction Rules of Algorithmic Typing

this existential variable must match an arrow type, we split it into two fresh variables and process
the worklist with the worklist substitution. Rule 33 checks whether an expression of the arrow
type � → � solved by the matching can be applied to another expression 4 by adding a checking
judgment 4 ⇐ � to the worklist, and then replacing the placeholder 0 in l with the result of the
application �. The reintroduction of the application-inference judgments in this rule is because
the matching output 2 and 3 in rule 25 are used in two separate judgments: 2 in 42 ⇐ 2 , and 3 in
[3/0]l . Since the inner judgment l can only pass the information about the placeholder 0 in our
continuation passing syntax, an extra judgment is necessary to distribute 2 and 3 .

Rules 34-36 are the algorithmic counterparts of ◦⇒⇒∀, ◦⇒⇒⊥, and ◦⇒⇒Var respectively. Rules
34 and 35 are two base cases where the result of the type application can be fully determined, so
we replace the placeholder 0 in l with this known result type. There is no new rule for existential
variables because a monotype can never be type-applied under the monotype de�nition.

4.3 Metatheory

To help formalize the correspondence between the declarative and algorithmic systems, we adopt
the approach used by Zhao et al. [2019], which adds another intermediate system de�ned by a set
of reduction rules on the declarative worklist Ω. The syntax of Ω is the same as the algorithmic
worklist except all types in its judgments and variable declarations are declarative types. Similar to
the notations in the algorithmic worklist, ` Ω, Ω ` � and Ω ` l denote the well-formedness.
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There are two sets of reduction rules for this intermediate system, declarative reduction Ω −→ Ω
′

and declarative worklist reduction Ω −→0 Ω
′, for soundness and completeness proofs, respectively.

Ω −→ Ω
′ is a rephrasing of the declarative judgments using the worklist style, while Ω −→0 Ω

′

mimics the algorithmic reduction rules but still guesses the monotype g instead of introducing
existential variables. The detailed rules of well-formedness and reduction of the declarative worklist
can be found in the extended version of this paper. Ω −→∗ · and Ω −→∗

0 · are proved equivalent:

Theorem 4.1 (Eqivalence of Declarative Reduction). ∀Ω, if ` Ω, then Ω −→∗ · i� Ω −→∗
a ·.

Soundness and Completeness. Soundness and completeness are built onworklist instantiation [Zhao
et al. 2019], which converts an algorithmic worklist Γ to a declarative worklist Ω by replacing all
existential variables Û in Γ with a well-formed monotype g in Ω.

Γ Ω Ω is instantiated to Γ

Ω Ω
 Ω

Ω ` g Ω, [g/Û]Γ Ω

Ω, Û, Γ Ω
 Û

Their formal statement is standard as described in the following two theorems. The quanti�er in
the two lemmas is di�erent because worklist instantiation is a non-deterministic relation.

Theorem 4.2 (Soundness). If ` Γ and Γ −→∗ ·, then ∃Ω, s.t. Γ  Ω and Ω −→∗ ·.

Theorem 4.3 (Completeness). If Ω −→∗
a ·, then ∀Γ, if ` Γ and Γ  Ω, then Γ −→∗ ·.

The proof proceeds by induction of the derivation of Γ −→∗ · and Ω −→∗
0 ·, respectively.

Compared with the previous proof, there are two di�erences. First, existential-variable solving is all
dealt with by worklist substitution. The corresponding cases on the proof are uni�ed, all depending
on the instantiation-consistency lemma that worklist substitution preserves instantiation. We prove
the lemma by induction on an equivalent tail-recursive version of the worklist substitution.

Lemma 4.4 (Instantiation Consistency).

(1) If {g/Û}Γ  Ω, then Γ  Ω;

(2) If Γ  Û ≤ g  Ω  g ′ ≤ g ′ or Γ  g ≤ Û  Ω  g ′ ≤ g ′, then {g/Û}Γ  Ω.

Secondly, the case ≤→ of the completeness proof relies on a property to ensure the occurrence-
check condition in rules 13-16 is satis�ed, enabling the reduction on the algorithmic worklist to
continue. The proof of this lemma in �4≤ was based on the contradiction between the following
two properties (1) if � → � contains Û , �1 → �1 contains strictly more arrows that � and (2) if
Ω  g ≤ �, g has more arrows than �. Fortunately, the above two properties still hold in �1≤ by just
counting the arrows in bounds (the number of arrows of a (sub)type variable is still zero).

Lemma 4.5 (Prune Transfer for Instantiation). If (Γ  Û ≤ A → B)  (Ω  C ≤ A1 → B1)

and Ω ` C ≤ A1 → B1, then Û ∉ FV (A) ∪ FV (B).

Con�uence and Determinism. To demonstrate the greedy nature of the algorithmic approach (i.e.,
it always picks the �rst instantiation and does not backtrack), we show that the algorithmic system
is con�uent and deterministic. These properties suggest that the algorithm can be implemented in
an e�cient way.

Theorem 4.6 (Algorithmic-Reduction Determinism). Given ` Γ, if Γ −→ Γ1 and Γ −→ Γ2 ,

then Γ1 = Γ2 (up to U-equivalance).

Corollary 4.7 (Confluence). Given ` Γ, if Γ −→∗ Γ1 and Γ −→∗ Γ2 , then ∃Γ3, Γ4 s.t. Γ1 −→
∗ Γ3

and Γ2 −→
∗ Γ4 and Γ3 = Γ4 (up to U-equivalance).
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Con�uence is a direct corollary of Lemma 4.6, proved by induction on the derivation of Γ −→∗
Γ1.

Removing some side-conditions would make the algorithm non-deterministic, but could still retain
con�uence. Most of the restrictions that can be dropped, while retaining con�uence, are checks that

a type cannot be >. For instance, we do not need � ≠ > in rule 7 or� ≠ > in rule 11. Besides, g ≠ V̂

in rule 14 can also be dropped. The more interesting restriction that we believe can be dropped is
the monotype restriction in rules 15 and 16. All the other conditions seem necessary not to get into
any stuck state. We conjecture that the removal of restrictions preserves con�uence (while losing
determinism), but we did not formally study that version of the algorithm.

Decidability. The decidability proof is based on a lexicographic group of four measures on the
worklist Γ:

〈
|Γ |4 , |Γ |l , 2|Γ |→ + |Γ |∀ + |Γ |Û , |Γ |F

〉
. |Γ |4 , |Γ |l , |Γ |→, |Γ |∀ , |Γ |Û , |Γ |F are the term size,

number of judgments, number of splits, number of ∀, number of existential-variable declarations,
and a simpli�ed version of weight, of the worklist, respectively. Compared with the measure used
by �4≤ , the key innovation is |Γ |→, which statically computes the number of maximum splits of a
type �, assuming it is compared with an existential variable in subtyping. All the detailed measure
de�nitions are in the extended version of this paper. The |·|→ and |·|∀ measures enjoy the desirable
property of remaining unchanged after substituting an existential variable with any monotype,
implying that both existential-variable solving and worklist instantiation will not a�ect them.
Using |·|→ enables us to reduce the number of measures required for the decidability proof. In

�4≤ , a tuple of 6 di�erent measures (instead of 4) is needed. It also solves the complication in the
decidability proof when comparing existential variables with an arrow type in subtyping. Zhao
et al. uses an instantiation decidability lemma to state that their measure will �nally decrease after
an inde�nite number of steps after they split an existential variable by observing how worklist
reduction behaves on instantiation judgments. Instead, in our rules 15 and 16, |Γ |→ decreases by
one, and |Γ |Û increases by one after a two-step reduction, so the whole measure decreases.

The most interesting case in our decidability proof is the rule 12, where the rebounding happens

for the 0 in�2 during the reduction from |∀(0 ≤ �2). �2 |
Γ

→ to |�2 |
Γ,0.�1
→ . To proceed with the proof,

we need to �rst �nd some connections between the measures before and after the rebounding
based on the condition that �1 and �2 are equivalent.
According to the de�nition of |·|Γ→, we can prove that if two declarative types � and � are

equivalent, then |�|Ω→ = |� |Ω→ and |�|Ω
∀
= |� |Ω

∀
both hold.

Lemma 4.8 (| · |→ and | · |∀ Eqality of Eqivalent Declarative Type).

Given ` Ω  A ≤ B  B ≤ A, if Ω  A ≤ B  B ≤ A −→∗ ·, then |A|Ω→ = |B|Ω→ and |A|Ω
∀
= |B|Ω

∀
.

Using soundness, completeness, and the property that |·|→ and |·|∀ remains unchanged under
worklist instantiation, we can transfer this property to the algorithmic system.

Lemma 4.9 (| · |→ and | · |∀ Eqality of Eqivalent Algorithmic Type).

Given ` Γ  A ≤ B  B ≤ A, if Γ  A ≤ B  B ≤ A −→∗ ·, then |A|Γ→ = |B|Γ→ and |A|Γ
∀
= |B|Γ

∀
.

Then, we apply the induction hypothesis on Γ1 : Γ, 0 . �1  �2 ≤ �1  �1 ≤ �2 to get that Γ1
reduces or not. If Γ1 does not reduce, based on the algorithmic-reduction weakening–lemma (++
is the worklist concatenation), Γ1  �1 ≤ �2 does not reduce either. The algorithmic-reduction
weakening–lemma is also proved by transferring the declarative-reduction weakening–lemma
using soundness and completeness.

Lemma 4.10 (Algorithmic-Reduction Weakening). Given ` Γ1 ++ Γ2 , if Γ1 ++ Γ2 −→
∗ ·, then

Γ1 −→
∗ ·

Otherwise, if Γ1 reduces, we can now utilize the equality property of | · |→ and | · |∀ to know
these two measures of the body �2 are not a�ected by the rebounding on equivalent types and the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 295. Publication date: October 2023.



Greedy Implicit Bounded �antification 295:23

overall measure decreases. For the remaining cases, the measures are also guaranteed to decrease
after a constant number of steps, so the decidability proof of our system can be �nalized in a
straightforward manner. We can now establish the decidability theorem for both algorithmic and
declarative systems.

Theorem 4.11 (Algorithmic Decidability). Given ` Γ, it is decidable whether Γ −→∗ · or not.

Corollary 4.12 (Declarative Decidability). Given ` Ω, it is decidable whether Ω −→∗ · or not.

One remark is that the dependence of the decidability proof on soundness and completeness
limits the applicability of the proof technique to other variants or extensions of the system where
completeness is lost. We discuss one such variant in Section 5. The proof of two lemmas depends
on soundness and completeness: measure equality of algorithmic types and algorithmic-reduction
weakening, both of which are used to prove the case of rule 12. To make the proof of decidability
independent from soundness and completeness, we can try not to use these two lemmas in the �rst
place by modifying the algorithm to avoid rebounding. However, such a change to the algorithm
seems non-trivial. Another possibility is to prove them directly on the algorithmic system, but it
seems to require a simultaneous proof with the decidability itself. Abella’s lack of handy mathemat-
ical reasoning already resulted in a complicated decidability proof, so we did not attempt a direct
proof for either of the properties. Exploring solutions to simplifying the proof and removing the
dependence on soundness and completeness is left for future work.

5 EXPLORING THE DESIGN SPACE

In this section, we revisit some design decisions of �1≤ and present a sound variant of �1≤ that
supports subtyping between monotypes, at the cost of completeness.

5.1 �1≤ with Monotype Subtyping

The inference algorithm of �1≤ , as presented in the earlier sections of the paper, relies on the
equality of monotypes. Consequently, implicit instantiation cannot employ subtyping between
monotypes, which can be limiting, since subtyping between monotypes is pervasive in object-
oriented languages. Equality of monotypes is basically imposed by the desire to obtain a complete

type-inference algorithm, and the choice of greedy instantiation. Gladly, it is possible to generalize
our de�nition of monotypes to allow for monotype subtyping, while still having a sound type
inference algorithm.

More inference without completeness. We can broaden our de�nition of monotypes to get more
type inference. We consider type variables bounded by monotypes to be themselves monotypes in
our new variant of �1≤ . This is achieved by adding the following rule to the de�nition of monotypes
in Figure 2:

0 ≤ � ∈ Ψ Ψ `< �

Ψ `< 0
MTVarRec

With this rule, we can accept more programs where implicit instantiation can use type variables
with (monotype) bounds. This rule also makes the de�nition of monotypes even less syntactic as
now we need to recursively analyze the bounds of type variables to determine whether a type
variable is a monotype or not. In this design, we still obtain a sound algorithm with respect to
the declarative speci�cation, but completeness is lost. The algorithmic system behaves similarly
to the implementation by Cardelli [1993], where the success or failure of type inference becomes
less predictable. An example that illustrates the loss of completeness is the subtyping judgment
·, 1 ≤ 1  ∀(0 ≤ 1). 0 → 0 → 0 ≤ 1 → 1 → 1, which is accepted by the new declarative system by
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instantiating 0 with 1 (as b is regarded as a monotype in the new de�nition). However, it is rejected
by algorithmic reduction because the algorithm will solve Û to 1 after a two-step reduction.

·, 1 ≤ 1  ∀(0 ≤ 1). 0 → 0 → 0 ≤ 1 → 1 → 1 −→∗ ·, 1 ≤ 1, Û  Û → Û ≤ 1 → 1  1 ≤ Û

Nominal subtyping. The previous example hints for how our algorithm can be extended to deal
with nominal subtyping, which is common in OOP languages. In mainstream OOP languages, class
hierarchies can be de�ned, introducing subtyping relations between classes. For instance we can
add Circle and Shape classes, where Circle <: Shape. Here Circle and Shape would be two
monotypes, and it would be desirable to account for the subtyping relation between those types to
enable implicit instantiation.
We can emulate what would happen after extending the calculus with nominal subtyping via

bounded quanti�cation. With the new MTVarRec rule, we can model examples involving a Circle
and Shape type with a subtyping relation between them. For instance, consider the following two
subtyping statements:

(1) ·, Shape ≤ >, Circle ≤ Shape  ∀(0 ≤ Shape). 0 → 0 → 0 ≤ Shape → Circle → Shape

(2) ·, Shape ≤ >, Circle ≤ Shape  ∀(0 ≤ Shape). 0 → 0 → 0 ≤ Circle → Shape → Shape

By viewing Shape and Circle just as regular (bounded) type variables, the �rst statement succeeds
as greedy instantiation picks Shape, leading to Shape → Shape → Shape ≤ Shape → Circle →

Shape, which is valid. In contrast, the second statement fails as greedy instantiation results in
Circle → Circle → Circle ≤ Circle → Shape → Shape, which is invalid. This behavior
closely parallels the behavior of instantiation in Scala 2 concerning curried functions:

trait Shape

trait Circle extends Shape

def poly2[A] : A => A => A = x => y => x

def ex1 = poly2 (new Shape {}) (new Circle{}) // Accepted

def ex2 = poly2 (new Circle{}) (new Shape{}) // Fails: instantiation picks Circle

In Scala 2, ex1 is accepted, while ex2 fails, since Scala (greedily) picks Circle for the instantiation
of A. This example illustrates the left-to-right bias of Scala 2 type inference. Scala 3 seems to employ
a hybrid algorithm that combines local type inference with other techniques and can accept ex2.
Unfortunately, this algorithm is undocumented, and it is hard to make a precise comparison against
it. The behavior in Scala 2 should be consistent with local type inference and algorithms employed
in other OOP languages. Of course, for uncurried functions, Scala 2 employs local type inference
techniques, which collect subtyping constraints for all the arguments. Thus, both of the examples
with uncurried functions below succeed:

def poly[A](x : A, y : A) : A = x

def ex3 = poly(new Shape {}, new Circle{}) // Accepted

def ex4 = poly(new Circle{}, new Shape {}) // Accepted

The primary limitation of our greedy algorithm, compared to the algorithms employed in Scala
2, is the absence of specialized support for uncurried functions. This limitation is still important,
given that mainstream OOP languages use uncurried functions by default. However, it is worth
mentioning that many implicit instantiations should still work correctly with our algorithm, even
with uncurried functions.

Metatheory results and practicality. The algorithmic rules of this variant are the same, except
that the side condition � ≠ > in rule 7 is changed to (Γ 0< 0) ∨ (� is not a existential variable)
for determinism. We have formalized this variant and proved all the same results that we have
presented for �1≤ , except for completeness and decidability. Completeness does not hold, as our
earlier example shows. We conjecture that the algorithm will terminate, but since our current proof
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of decidability relies on the completeness, we cannot adapt it to obtain a proof of termination
for the algorithm. Despite being incomplete, we believe that this variant of �1≤ would work well
in practice. Cardelli [1993] has observed that his greedy algorithm works well in practice, and
other researchers [Mercer et al. 2022; Pierce and Turner 2000] corroborated Cardelli’s opinion
on the greedy approach. In fact, Scala’s type-inference algorithm is itself (partly) greedy, and the
“left-to-right” bias of Scala in doing type inference and instantiation is well-known. Seasoned Scala
programmers are aware of the left-to-right bias of the algorithm and exploit it in the design of
Scala programs3. Thus, we think that this variant of �1≤ could work well, without causing much
confusion to programmers, despite its bias in the instantiation order.

5.2 Other Possible Extensions

Complete type inference with monotype subtyping. One alternative way to obtain more type
inference while preserving completeness would be to use a non-greedy algorithm instead. The
greediness of our algorithm shows up in rules such as:

Γ  Û ≤ g −→13 {g/Û}Γ when Û ∉ �+ (g)

Here, once an existential variable is found to be a subtype of a monotype g , we immediately solve it
to that monotype by substituting Û by g in the remaining worklist. A non-greedy algorithm cannot
employ substitution directly and should, instead, collect subtyping constraints. For instance, instead
of an entry Γ, Û in the worklist, we could have, Γ, � ≤ Û ≤ �, where � and � are lower and upper
bounds, respectively, of Û . In a rule such as the above, instead of substituting Û by g , we would need
to update the upper bound of Û in the worklist. This change in the algorithm would be non-trivial
and require many modi�cations, as well as changes in the metatheory. With this change, we would
be able to delay instantiation until all the constraints have been collected. In turn, this would avoid
the bias of the (incomplete) greedy algorithm in Section 5.1. We are interested in exploring this
idea in the future, but have not developed an algorithm and metatheory yet.

Let polymorphism. Another way to get more inference with the current design of �1≤ is to add

let polymorphism. We believe that �1≤ has interesting properties that would make this easier than
previous designs attempting to add HM-style type inference in languages with subtyping. Our
de�nition of monotypes in Figure 2 forbids all bounded type variables (i.e., the bound can only be>).
While this is quite conservative for some programs with subtyping, it does have some advantages.
If generalization is applied to a monotype containing existential type variables, then all those
existential type variables would have to be unbounded if generalized. This would mean that no
simpli�cation of polymorphic constraints would be needed, since there could be no bounds for
generalized type variables.

A problem in adapting this idea to �1≤ is that, in the current design, the order of type variables in
universal quanti�cation is relevant. But, for let generalization, we should have order-irrelevant
universal quanti�cation. Fortunately, Eisenberg et al. [2016] has studied a related problem and
proposed a solution that enables both order-relevant quanti�ers (which can use explicit type
applications), as well as order-irrelevant quanti�ers, which enable HM-style let polymorphism (but
cannot use explicit type applications). Eisenberg et al.’s approach is currently implemented in the
GHC Haskell compiler. We believe that a similar design could be adopted for �1≤ .

6 RELATED WORK

Local type inference. Local type inference has been shown to work in the presence of bounded
quanti�cation by Pierce and Turner [2000], albeit with some limitations as discussed in Section 2.

3See, for example: https://discuss.daml.com/t/scala-inference-rules-of-thumb/2242.
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Despite its success and impact, local type inference has only been studied formally in restricted
settings, which are basically variants of System � and �≤ . Many of the extensions of local type
inference used in practical implementations have not been formally studied. Colored local type
inference [Odersky et al. 2001] enables the propagation of partial type information by coloring
inherited and synthesized types according to their directions of propagation in the syntax tree. The
algorithm was also adopted by Plociniczak [2016] to analyze the type errors and it is the basis of
the type-inference algorithm in Scala 2. Section 2 gives an extensive overview of (colored) local
type inference, and compares it to �1≤ .
The treatment of curried applications is limited in local type inference, possibly hindering

its usability for (functional) languages where curried applications are common. Spine-local type
inference [Jenkins and Stump 2018] takes an approach that utilizes the type information from the
application spine to address this limitation, improving type inference for curried applications. An
example that illustrates this limitation of local type inference, due to Jenkins and Stump, is:

pair : ∀0. ∀1. 0 → 1 → (0 × 1)  pair (_G .G) 0 : (Int → Int) × Int ⇒ (Int → Int) × Int

Even if full types (Int → Int) × Int are provided in a type annotation, the above program fails to
type-check with classic local type inference because the type of the �rst argument _G.G cannot be
inferred. Jenkins and Stump propose a form of contextual type-argument inference, which allows
the propagation of constraints in curried-function applications, accepting the above example. �1≤
treats curried and uncurried applications uniformly with existential variables, naturally solving

the problem. In the above example, �1≤ will generate Û and V̂ , which later will be instantiated to

Int → Int and Int during constraint solving. In addition, in �1≤ , even the expression without

the annotation (pair (_G .G) 0) can type-check due to �1≤ ’s global approach to type-inference.
In contrast, without type annotations, pair (_G.G) 0 would be rejected using (spine) local type
inference approaches. However, since �1≤ only solves existential variables to monotypes, spine-local

type inference accepts some examples that are rejected in �1≤ :

pair : ∀0. ∀1. 0 → 1 → (0 × 1)  pair (_G.G) 0 : (∀0. 0 → 0) × Int ⇒ (∀0. 0 → 0) × Int

�1≤ requires explicit instantiation for the above example since the type that should be inferred
is a polytype, ∀0. 0 → 0. Mercer et al. [2022] proposed a local type-inference algorithm for an
impredicative polarized call-by-push-value variant of System � . The proposed algorithm is formally
proved to be decidable. Quick Look [Serrano et al. 2020], adopted in GHC 9, provides impredicative
inference, but subtyping of function types is treated invariantly.
Unlike our work, these recent developments adopting ideas of local type inference focus on

traditional System � , and do not consider bounded quanti�cation or top and bottom types.

Global type inference with bounded quanti�cation. Global type inference employs long-distance
constraints via uni�cation variables. Cardelli [1993]’s �≤ implementation provides a heuristic
global type-inference algorithm that is not formally studied. It introduces uni�cation variables
to support long-distance constraints. Impredicative instantiation is implemented by unifying the
uni�cation variable with the �rst type constraint it encounters. In other words, Cardelli adopts a
greedy approach, like our work. Type variables are directly instantiated to their bounds. However,
the algorithm is not complete in the sense that the success of its greedy solving scheme depends
on the order of candidate instantiations. On the other hand, �1≤ is guaranteed to �nd the correct

solution meeting our declarative speci�cation, yielding a more predictable behavior. �1≤ achieves
this by distinguishing monotypes, which can always be guessed, from more general polytypes that
require explicit type applications.
Sequeira [1998] studied a predicative variant of System � with bounded quanti�cation, named

"!∀≤ . ML∀≤ is not an extension of �≤ and employs some di�erent rules. In particular, there
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are at least two important restrictions. Firstly,ML∀≤ is predicative and does not support explicit
type applications. Thus, it cannot encode impredicative instantiations of �≤ . Secondly, the bounds
for type variables are restricted to monotypes, whereas �≤ supports unrestricted bounds."!∀≤
is more ambitious than our work in the sense that it aims at complete Hindley-Milner style
inference, whereas we do not support let generalization or inference of principal types. Another
important issue, which was left unsolved in"!∀≤ , is that it does not address the issue of simplifying
constraints. This results in an impractical system where the inferred types can be too hard for
humans to understand due to the number of constraints on types.

Type inference with subtyping and MLSub. The conventional approach to tackle type inference
in HM extended with subtyping is collecting the constraint set and simplifying it using �nite
automata [Eifrig et al. 1995a,b; Pottier 1998]."!� [Rémy and Yakobowski 2008] extends the syntax
of System � with �exible quanti�cation ∀(0 ≥ �). � and rigid quanti�cation ∀(0 = �). � to help
track the information for possible instantiations, requiring annotations on variables with divergent
impredicative instantiations only. Similarly to Quick Look, HMF [Leijen 2008] also restricts the
subtyping of the function type to be invariant. MLsub [Dolan and Mycroft 2017; Parreaux 2020] has
the more ambitious goal to have complete inference of principal types with (�rst-order, or rank-1)
polymorphic functions. To obtain the principality of inference and subsumption in the presence
of subtyping, MLsub builds an initial distributive lattice over type with a speci�c group of type
constructors: equi-recursive, union, and intersection types. MLstruct [Parreaux and Chau 2022]
extends MLsub by supporting �rst-class union and intersection types with a new boolean algebra
over types. �1≤ , has more modest goals in terms of type inference. Full inference for System � and
�≤ without type annotations, is undecidable, so the techniques of MLsub and its variants cannot be
used directly. More generally MLsub/struct address �rst-order polymorphism only, whereas �1≤
deals with higher-order polymorphism, and also supports impredicative explicit type applications.
Nevertheless, we expect that several of the techniques developed in MLSub/struct will prove to be
useful in the future to improve partial type inference methods.

7 CONCLUSION

Type inference is vital in polymorphic programming languages to alleviate the burden of writing
type annotations everywhere. However, it remains controversial how to balance the expressiveness
of the language and the ability to obtain a practical and e�ective type inference algorithm. In this
paper, we propose �1≤ , which extends elementary type inference and �4≤ to bounded quanti�cation,
and inherits �4≤ ’s modest approach to global type inference. With a careful design of what should be
regarded as monotypes, we obtain a predictable and easy-to-implement algorithm that is sound and
complete with respect to the declarative system. Meanwhile, instantiations involving polytypes are
still available using explicit type applications. Thus, �1≤ can express all kernel �≤ programs. We also

study a variant of �1≤ that can infer types for more programs at the cost of completeness. This variant
supports monotype subtyping, and has a left-to-right bias with respect to instantiation, which is
similar to the bias that exists in languages like Scala. Thus we believe that, despite incompleteness,
this variant can be used in practical type-inference algorithms.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their valuable comments, to Yaoda Zhou for his
helpful feedback on the draft, and especially to Jinxu Zhao for his help in the earlier designs of �1≤ .
The research is supported by the Practical Type Inference with Bounded Quanti�cation and Union
and Intersection Types collaboration project (TC20230508031) between Huawei and The University
of Hong Kong and project number 17209821 of Hong Kong Research Grants Council.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 295. Publication date: October 2023.



295:28 Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

REFERENCES

Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. 1991. Inheritance as Implicit Coercion. Information

and Computation 93, 1 (1991), 172–221. https://doi.org/10.1016/0890-5401(91)90055-7

Luca Cardelli. 1993. An Implementation of �<:. Technical Report. SRC Research Reports, Digital Equipment Corporation.

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1991. An Extension of System F with Subtyping.

In Proceedings of the International Conference on Theoretical Aspects of Computer Software. TACS, 750–770. https:

//doi.org/10.1007/3-540-54415-1_73

Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data Abstraction, and Polymorphism. ACM Comput. Surv.

17, 4 (1985), 471–523. https://doi.org/10.1145/6041.6042

Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira. 2023. Greedy Implicit Bounded Quanti�cation (Artifact). https:

//doi.org/10.5281/zenodo.8336774

Pierre-Louis Curien and Giorgio Ghelli. 1992. Coherence of Subsumption, Minimum Typing and Type-Checking in F≤.

Mathematical Structures in Computer Science 2, 1 (1992), 55–91. https://doi.org/10.1017/S0960129500001134

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type Inference in MLsub. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages. POPL, 60–72. https://doi.org/10.1145/3009837.3009882

Jana Dun�eld and Neelakantan R. Krishnaswami. 2013. Complete and Easy Bidirectional Typechecking for Higher-rank

Polymorphism. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming. ICFP,

429–442. https://doi.org/10.1145/2500365.2500582

Jana Dun�eld and Neelakantan R. Krishnaswami. 2019. Sound and Complete Bidirectional Typechecking for Higher-Rank

Polymorphism with Existentials and Indexed Types. In Proceedings of the ACM on Programming Languages, Vol. 3. POPL,

Article 9. https://doi.org/10.1145/3290322

Jonathan Eifrig, Scott Smith, and Valery Trifonov. 1995a. Sound Polymorphic Type Inference for Objects. In Proceedings of

the 10th ACM International Conference on Object Oriented Programming Systems Languages and Applications. OOPSLA,

169–184. https://doi.org/10.1145/217838.217858

Jonathan Eifrig, Scott Smith, and Valery Trifonov. 1995b. Type Inference for Recursively Constrained Types and Its

Application to OOP. Electronic Notes in Theoretical Computer Science 1 (1995), 132–153. https://doi.org/10.1016/S1571-

0661(04)80008-2

Richard A. Eisenberg, StephanieWeirich, and Hamidhasan G. Ahmed. 2016. Visible Type Application. In European Symposium

on Programming. ESOP, 229–254. https://doi.org/10.1007/978-3-662-49498-1_10

Andrew Gacek. 2008. The Abella Interactive Theorem Prover (System Description). In Proceedings of 4th International Joint

Conference on Automated Reasoning. IJCAR, 154–161. https://doi.org/10.1007/978-3-540-71070-7_13

Jean-Yves Girard. 1972. Interprétation fonctionnelle et elimination des coupures de l’arithmétique d’ordre supérieur. Thèse

d’état. Université de Paris 7.

Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969),

29–60. https://doi.org/10.2307/1995158

Haruo Hosoya and Benjamin C. Pierce. 1999. HowGood is Local Type Inference? Technical Report. University of Pennsylvania.

Christopher Jenkins and Aaron Stump. 2018. Spine-Local Type Inference. In Proceedings of the 30th Symposium on Imple-

mentation and Application of Functional Languages. IFL, 37–48. https://doi.org/10.1145/3310232.3310233

Didier Le Botlan and Didier Rémy. 2003. MLF: Raising ML to the Power of System F. In Proceedings of the 8th ACM SIGPLAN

International Conference on Functional Programming. ICFP, 27–38. https://doi.org/10.1145/944705.944709

Daan Leijen. 2008. HMF: Simple Type Inference for First-class Polymorphism. In Proceedings of the 13th ACM SIGPLAN

International Conference on Functional Programming. ICFP, 283–294. https://doi.org/10.1145/1411204.1411245

Guillaume André Fradji Martres. 2023. Type-Preserving Compilation of Class-Based Languages. Ph. D. Dissertation. EPFL.

https://doi.org/10.5075/ep�-thesis-8218

HenryMercer, Cameron Ramsay, and Neel Krishnaswami. 2022. Implicit Polarized F: Local Type Inference for Impredicativity.

arXiv preprint arXiv:2203.01835. https://doi.org/10.48550/arXiv.2203.01835

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (1978), 348–375.

https://doi.org/10.1016/0022-0000(78)90014-4

Martin Odersky and Konstantin Läufer. 1996. Putting Type Annotations to Work. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. POPL, 54–67. https://doi.org/10.1145/237721.237729

Martin Odersky, Christoph Zenger, and Matthias Zenger. 2001. Colored Local Type Inference. In Proceedings of the 28th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL, 41–53. https://doi.org/10.1145/

360204.360207

Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal Type Inference with Subtyping Made Easy

(Functional Pearl). In Proceedings of the ACM on Programming Languages, Vol. 4. ICFP, Article 124. https://doi.org/10.

1145/3409006

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 295. Publication date: October 2023.

https://doi.org/10.1016/0890-5401(91)90055-7
https://doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1145/6041.6042
https://doi.org/10.5281/zenodo.8336774
https://doi.org/10.5281/zenodo.8336774
https://doi.org/10.1017/S0960129500001134
https://doi.org/10.1145/3009837.3009882
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/3290322
https://doi.org/10.1145/217838.217858
https://doi.org/10.1016/S1571-0661(04)80008-2
https://doi.org/10.1016/S1571-0661(04)80008-2
https://doi.org/10.1007/978-3-662-49498-1_10
https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.2307/1995158
https://doi.org/10.1145/3310232.3310233
https://doi.org/10.1145/944705.944709
https://doi.org/10.1145/1411204.1411245
https://doi.org/10.5075/epfl-thesis-8218
https://doi.org/10.48550/arXiv.2203.01835
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/3409006
https://doi.org/10.1145/3409006


Greedy Implicit Bounded �antification 295:29

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types. In

Proceedings of the ACM on Programming Languages, Vol. 6. OOPSLA2, Article 141. https://doi.org/10.1145/3563304

Simon Peyton Jones and Mark Shields. 2004. Lexically Scoped Type Variables. (March 2004). Draft.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical Type Inference for Arbitrary-

Rank Types. Journal of Functional Programming 17, 1 (2007), 1–82. https://doi.org/10.1017/s0956796806006034

Benjamin C. Pierce. 1992. Bounded Quanti�cation is Undecidable. In Proceedings of the 19th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL, 305–315. https://doi.org/10.1145/143165.143228

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT Press.

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. In Proceedings of the 25th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL, 252–265. https://doi.org/10.1145/268946.268967

Hubert Plociniczak. 2016. Decrypting Local Type Inference. Ph. D. Dissertation. EPFL.

François Pottier. 1998. Type Inference in the Presence of Subtyping: From Theory to Practice. Ph. D. Dissertation. INRIA.

Didier Rémy and Boris Yakobowski. 2008. From ML to MLF: Graphic Type Constraints with E�cient Type Inference.

In Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming. ICFP, 63–74. https:

//doi.org/10.1145/1411204.1411216

John C. Reynolds. 1974. Towards a Theory of Type Structure. In Programming Symposium. 408–425. https://doi.org/10.1007/3-

540-06859-7_148

Dilip Sequeira. 1998. Type Inference With Bounded Quanti�cation. Ph. D. Dissertation. University of Edinburgh.

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A Quick Look at Impredicativity. In

Proceedings of the ACM on Programming Languages, Vol. 4. ICFP, Article 89. https://doi.org/10.1145/3408971

Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded Impredicative Polymorphism.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI, 783–796.

https://doi.org/10.1145/3192366.3192389

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Re�ned Criteria for Gradual Typing. In

1st Summit on Advances in Programming Languages. SNAPL, 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. 2008. FPH: First-class Polymorphism for Haskell. In

Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming. ICFP, 295–306. https:

//doi.org/10.1145/1411204.1411246

Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. Consistent Subtyping for All. ACM Transactions

on Programming Languages and Systems 42, 1, Article 2 (2019). https://doi.org/10.1145/3310339

Jinxu Zhao and Bruno C. d. S. Oliveira. 2022. Elementary Type Inference. In 36th European Conference on Object-Oriented

Programming. ECOOP, 2:1–2:28. https://doi.org/10.4230/LIPIcs.ECOOP.2022.2

Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. A Mechanical Formalization of Higher-Ranked Polymorphic

Type Inference. In Proceedings of the ACM on Programming Languages, Vol. 3. ICFP, Article 112. https://doi.org/10.1145/

3341716

Litao Zhou, Yaoda Zhou, and Bruno C. d. S. Oliveira. 2023. Recursive Subtyping for All. In Proceedings of the ACM on

Programming Languages, Vol. 7. POPL, Article 48. https://doi.org/10.1145/3571241

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 295. Publication date: October 2023.

https://doi.org/10.1145/3563304
https://doi.org/10.1017/s0956796806006034
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/268946.268967
https://doi.org/10.1145/1411204.1411216
https://doi.org/10.1145/1411204.1411216
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/1411204.1411246
https://doi.org/10.1145/1411204.1411246
https://doi.org/10.1145/3310339
https://doi.org/10.4230/LIPIcs.ECOOP.2022.2
https://doi.org/10.1145/3341716
https://doi.org/10.1145/3341716
https://doi.org/10.1145/3571241

	Abstract
	1 Introduction
	2 Overview
	2.1 Background: Predicative and Elementary Type Inference
	2.2 A Tour of Local Type Inference
	2.3 Key Ideas in our Work

	3 Declarative System
	3.1 Syntax, Monotypes, and Well-Formedness
	3.2 Subtyping
	3.3 Typing
	3.4 Metatheory

	4 Algorithmic System
	4.1 Syntax, Well-Formedness, and Notation
	4.2 Algorithmic Rules
	4.3 Metatheory

	5 Exploring the Design Space
	5.1 Fb with Monotype Subtyping
	5.2 Other Possible Extensions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

