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Modern mainstream programming languages, such as TypeScript, Flow, and Scala, have polymorphic type

systems enriched with intersection and union types. These languages implement variants of bidirectional
higher-rank polymorphic type inference, which was previously studied mostly in the context of functional

programming. However, existing type inference implementations lack solid theoretical foundations when

dealing with non-structural subtyping and intersection and union types, which were not studied before.

In this paper, we study bidirectional higher-rank polymorphic type inference with explicit type applications,

and intersection and union types and demonstrate that these features have non-trivial interactions. We first

present a type system, described by a bidirectional specification, with good theoretical properties and a sound,

complete, and decidable algorithm. This is helpful to identify a class of types that can always be inferred. We

also explore variants incorporating practical features, such as handling records and inferring a larger class of

types, which align better with real-world implementations. Though some variants no longer have a complete

algorithm, they still enhance the expressiveness of the type system. To ensure rigor, all results are formalized

in the Coq proof assistant.
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1 Introduction
Programming languages such as TypeScript, Flow, and Scala, embrace type systemswith intersection

and union types [Bierman et al. 2014; Chaudhuri et al. 2017; Rompf and Amin 2016]. Intersection and

union types are important features for many languages. For typed variants of dynamic languages –

such as TypeScript, Flow and Typed Scheme [Tobin-Hochstadt and Felleisen 2008] – intersection

and union types are useful to type a lot of programming patterns including heterogeneous lists,

function overloading [Castagna et al. 1995], type narrowing, mixin patterns [Bessai et al. 2014], etc.

For Scala, intersection and union types are part of the DOT calculus [Rompf and Amin 2016], and

are considered to be key features of the language.

TypeScript, Flow, and Scala have also started to incorporate higher-rank polymorphism (HRP) [Oder-

sky and Läufer 1996] into object-oriented programming. HRP enables polymorphic types to appear
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anywhere in nested positions inside function types. In TypeScript or Flow, it is also possible to

have types such as (∀𝑎. 𝑎 → 𝑎) & (string → (∀𝑏. 𝑏 → boolean)) where polymorphic types

appear nested under other type constructors, such as intersection types. These features enhance

expressiveness and flexibility, enabling developers to write concise and robust code. Castagna et al.

[2024] points out that parametric polymorphismwith intersection and unions is a good combination

to type dynamic languages.

For programming languages to be practical, they must support type inference, enabling auto-

matic deduction of type information with only a small amount of explicit type annotations. HRP

type inference has been extensively studied in the context of functional programming [Dunfield

and Krishnaswami 2013; Leijen 2008; Peyton Jones et al. 2007]. However, there is little work on

HRP techniques dealing with intersection and union types. Type inference in object-oriented

programming (OOP) languages has predominantly relied on local type inference [Pierce and Turner

2000]. Local type inference scales well to the forms of non-structural subtyping employed in OOP.

Furthermore, local type inference enables both implicit and explicit instantiation of polymorphic

functions. Therefore, even some instantiations cannot be automatically inferred, programmers

have the possibility to explicitly specify them via explicit type applications [Eisenberg et al. 2016a;

Pierce and Turner 2000].

As local type inference also employ bidirectional typing [Dunfield and Krishnaswami 2021;

Pierce and Turner 2000], bidirectional HRP techniques [Cui et al. 2023; Dunfield and Krishnaswami

2013; Peyton Jones et al. 2007; Zhao and Oliveira 2022] seem to fit well with those implementations.

However, a significant difference between traditional HRP algorithms and local type inference is

that HRP algorithms typically support polymorphic subtyping [Mitchell 1988; Odersky and Läufer

1996]. The most distinctive and noteworthy rule in polymorphic subtyping is the ∀L rule:

Ψ ⊢ 𝜏 Ψ ⊢ [𝜏/𝑎]𝐴 <: 𝐵

Ψ ⊢ ∀𝑎.𝐴 <: 𝐵

The ∀L rule expresses the relationship between polymorphic types and their more specific (in-

stantiated) counterparts. For example, the statement ∀𝑎.𝑎 → 𝑎 <: Int → Int is a valid subtyping

assertion that can be derived by selecting 𝜏 = Int, and subsequently substituting the type variable

on the left-hand side of subtyping, as dictated by the ∀L rule. In contrast, traditional local type

inference lacks polymorphic subtyping and does not allow relating polymorphic types to their

instantiated counterparts.

A key challenge in developing type inference techniques for HRP for languages such as TypeScript

and Flow lies in the interaction between polymorphic subtyping and intersection and union

types, which is non-trivial. To complicate matters further, languages like TypeScript and Flow

support explicit type applications, which are known to have non-trivial interactions with HRP as

well [Eisenberg et al. 2016a; Zhao and Oliveira 2022].

In this paper we study the integration and interaction of three features: (1) higher-rank poly-
morphism; (2) intersection and union types; (3) explicit type applications. This interaction poses

challenges to existing type inference implementations, which lack solid theoretical foundations for

handling these features together. For instance, careful consideration is needed to preserve desirable

properties such as transitivity of subtyping, decidability, or completeness with respect to a type

system specification. As we show in our work, current type inference implementations of languages

with these features, like TypeScript, have some issues related to these interactions.

We present a calculus and type system, called 𝐹𝑒⊔⊓, with the above three features. 𝐹𝑒⊔⊓ has both a

bidirectional specification and an algorithmic version of the type system, and extends previous

work by Zhao and Oliveira [2022]. The key novelty of 𝐹𝑒⊔⊓ is the addition of intersection and union

types. We first study a type inference algorithm that has good theoretical properties: it is sound,
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complete with respect to the corresponding bidirectional specification, and decidable. This first type

system is helpful to identify a class of types that can always be inferred. In addition, we study some

variants of the algorithm that incorporate practical features such as records, and infer a larger class

of type. All the variants remain sound but some lose completeness with respect to the specification.

These variants demonstrate that it is possible, in many cases, to infer types with intersection and

union types and are closer to practical implementations like TypeScript or Flow.

In summary, the contributions of our work are:

• Bidirectional HRP with intersection and union types and explicit type applications.
These features are important in practice and adopted by TypeScript, Flow, and Scala.

• Type inference algorithms using a worklist approach. We adopt the worklist formulation

for algorithmic type inference by Zhao et al. [2019] and show how the worklist approach can be

extended to systems with intersection and union types.

• As part of the development of 𝐹𝑒⊔⊓, we introduced a few technical innovations. We design new

work and continuation to deal with the new reasoning required by intersection and union types.

Our syntax-directed transfer and defunctionalized representation of continuation-passing style

simplify reasoning and are suitable for mechanical formalization in any proof assistants without

built-in binder support. We also improve the polytype-splitting technique [Cui et al. 2023] by

dropping unnecessary checks and improving the decidability proof related to it.

• Weprove several results about themetatheory of 𝐹𝑒⊔⊓. These include soundness and completeness

between the bidirectional type systems and the algorithmic formulations, and decidability of the

latter. Furthermore, we also prove important properties of the bidirectional type systems, such as

subtyping transitivity and checking subsumption.

• All the results are mechanically formalized in Coq. Furthermore, we have a simple prototype

implementation capable of running the examples presented in the paper. The Coq formalization,

the implementation, the extended version of the paper, and our examples can be found in the

supplementary materials [Jiang et al. 2024] available at https://doi.org/10.5281/zenodo.13922446.

2 Overview
We start with a background on implicit (predicative)

1
higher-rank polymorphism with explicit

impredicative type applications [Zhao and Oliveira 2022] as our work adopts a similar framework

and design principles. Then we revisit the support of HRP and intersection and union types in

TypeScript. Finally, we provide an overview of the features of 𝐹𝑒⊔⊓.

2.1 Background: Higher-Rank Polymorphism with Explicit Type Applications
Higher-rank polymorphism for languages à la System 𝐹 allows universal types to appear deeply

inside function types, generalizing the Hindley-Milner (HM) polymorphism [Hindley 1969; Milner

1978] where universal types must be top-level. HRP with implicit predicative instantiation has been

thoroughly studied [Dunfield and Krishnaswami 2013; Odersky and Läufer 1996; Peyton Jones et al.

2007]. The 𝐹𝑒≤ calculus [Zhao and Oliveira 2022], originally based on Dunfield and Krishnaswami

[2013]’s type system, additionally supports impredicative instantiations to be explicitly provided

by the programmer with a type application syntax, allowing programs typable in System 𝐹 to be

type-checked in 𝐹𝑒≤ . We provide a quick overview of the important design choices in 𝐹𝑒≤ next.

HRP subtyping and explicit type applications. In traditional HRP systems [Odersky and Läufer

1996] without explicit type applications, the two key rules in subtyping relation are:

1
We slightly abuse the term "predicative instantiations". It originally meant instantiations not containing universal types in

System F, while we use it to mean all monotype instantiations. Accordingly, "impredicative instantiations" means polytype

instantiations in the remaining paper.
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Type variables 𝑎, 𝑏 Subtype variables 𝑎, ˜𝑏

Types 𝐴, 𝐵,𝐶 ::= 1 | 𝑎 | 𝑎 | ∀𝑎. 𝐴 | 𝐴 → 𝐵 | ⊤ | ⊥
Monotypes 𝜏, 𝜎 ::= 1 | 𝑎 | 𝜏 → 𝜎

Contexts Ψ ::= · | Ψ, 𝑎 | Ψ, 𝑎 | Ψ, 𝑥 : 𝐴

Ψ ⊢ 𝐴 ≤ 𝐵 𝐴 is a subtype of 𝐵

Ψ ⊢ 1 ≤ 1
≤1

Ψ ⊢ 𝐴 ≤ ⊤
≤⊤

Ψ ⊢ ⊥ ≤ 𝐴
≤⊥

Ψ ⊢ 𝑎 ≤ 𝑎
≤TVar

Ψ ⊢ 𝑎 ≤ 𝑎
≤STVar

Ψ ⊢ 𝐵1 ≤ 𝐴1 Ψ ⊢ 𝐴2 ≤ 𝐵2

Ψ ⊢ 𝐴1 → 𝐴2 ≤ 𝐵1 → 𝐵2

≤→
Ψ ⊢ 𝜏 Ψ ⊢ [𝜏/𝑎]𝐴 ≤ 𝐵 𝐵 ≠ ∀.∗

Ψ ⊢ ∀𝑎. 𝐴 ≤ 𝐵
≤∀L

Ψ, 𝑎 ⊢ [𝑎/𝑎]𝐴 ≤ [𝑎/𝑎]𝐵
Ψ ⊢ ∀𝑎. 𝐴 ≤ ∀𝑎. 𝐵

≤∀

Fig. 1. Type syntax and subtyping rules of 𝐹𝑒≤ .

Ψ ⊢ 𝜏 Ψ ⊢ [𝜏/𝑎]𝐴 ≤ 𝐵

Ψ ⊢ ∀𝑎. 𝐴 ≤ 𝐵
≤∀L

Ψ, 𝑏 ⊢ 𝐴 ≤ 𝐵

Ψ ⊢ 𝐴 ≤ ∀𝑏. 𝐵
≤∀R

These rules enable order-irrelevant universal quantifiers: two universal types with the same body

but a different order of quantifiers are considered equivalent. For example ∀𝑎. ∀𝑏. 𝑎 → 𝑏 and

∀𝑏. ∀𝑎. 𝑎 → 𝑏 are subtypes of each other. However, order-irrelevant quantifiers are incompatible

with explicit type applications in general [Eisenberg et al. 2016a] because the provided instantiation

is supposed to bind to a certain quantifier. Consider 𝜆𝑥 . 𝑥 3, which can be checked against both

(∀𝑎. ∀𝑏. 𝑎 → 𝑏) → Bool and (∀𝑏. ∀𝑎. 𝑎 → 𝑏) → Bool, by instantiating 𝑎 and 𝑏 to Int and Bool,

respectively. Now, suppose that we provide an explicit type instantiation Int to 𝑥 as 𝜆𝑥 . (𝑥 @Int 3).
This expression can be checked against (∀𝑎. ∀𝑏. 𝑎 → 𝑏) → Bool, but it cannot be checked against

(∀𝑏. ∀𝑎. 𝑎 → 𝑏) → Bool. Thus the types ∀𝑎. ∀𝑏. 𝑎 → 𝑏 and ∀𝑏. ∀𝑎. 𝑎 → 𝑏 do not behave equiv-

alently in the presence of explicit type applications and should not be in a subtyping relation.

Zhao and Oliveira [2022] also identify other subtler problems when explicit instantiations are

impredicative. Interested readers can refer to their paper for concrete examples and other details.

To address all the problems, 𝐹𝑒≤ adopts a different subtyping relation compared to Odersky and

Läufer’s, as shown in Figure 1. The ≤∀R rule is replaced with a more restrictive rule (≤∀) where both
sides must be universal types. This makes the order of the universal quantifiers relevant, forbidding

subtyping statements such as ∀𝑎. ∀𝑏. 𝑎 → 𝑏 ≤ ∀𝑏. ∀𝑎. 𝑎 → 𝑏. The second restriction is introducing

a new sort of variable, subtype variables (𝑎), used by the new rule ≤∀. Subtype variables are not
monotypes, so the implicit instantiation 𝜏 in rule ≤∀L cannot contain them. The third restriction is

adding two checks in well-formedness, to ensure no unused variables in universal types.

Ψ, 𝑎 ⊢ 𝐴 𝑎 ∈ fv(𝐴)
Ψ ⊢ ∀𝑎. 𝐴

Ψ, 𝑎 ⊢ 𝐴 Ψ, 𝑎 ⊢ 𝑒 𝑎 ∈ fv(𝐴)
Ψ ⊢ Λ𝑎. 𝑒 : 𝐴

The latter two restrictions are key to retaining stability under explicit (impredicative) type applica-

tion.

Theorem 2.1 (Stability under Instantiation). Given ⊢ Ψ,Ψ ⊢ ∀𝑎.𝐴,Ψ ⊢ ∀𝑎.𝐵 and Ψ ⊢ 𝐶 , if
Ψ ⊢ ∀a. A ≤ ∀a. B, then Ψ ⊢ [C/a]A ≤ [C/a]B.

Greedy solving strategy. Most previous HRP systems with implicit predicative instantiation [Cui

et al. 2023; Dunfield and Krishnaswami 2013; Odersky and Läufer 1996; Zhao and Oliveira 2022]

employ a greedy approach to solve the instantiation: existential variables are solved to the first

monotype (i.e., a non-polymorphic type) they are compared against in subtyping. The completeness

of such a strategy relies on an important property among the monotypes [Cui et al. 2023]: subtyping
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between monotypes implies equality of monotypes, or formally speaking, 𝜏1 ≤ 𝜏2 → 𝜏1 = 𝜏2. The

fact that ⊥ and ⊤ are not monotypes in 𝐹𝑒≤ is also crucial for this property to hold.

Bidirectional typing. 𝐹𝑒≤ chooses bidirectional typing to describe its specification and implement

the algorithm. The 𝐹𝑏≤ calculus [Cui et al. 2023], adds some general improvements to the typing rules

of 𝐹𝑒≤ , which we will also adopt in our work. An important property for a bidirectional type system

is checking subsumption. This property expresses the intuition that if a program type-checks under

some type 𝐴 then it should remain well-typed after changing 𝐴 to its supertypes.

Theorem 2.2 (Checking Subsumption). Given ⊢ Ψ,Ψ ⊢ B,Ψ ⊢ e, if Ψ ⊢ e ⇐ A and Ψ ⊢ A ≤ B,
then Ψ ⊢ e ⇐ B.

2.2 HRP and Intersection and Union Types in TypeScript
We illustrate TypeScript’s support for intersection and union types by examples, starting with a

brief introduction to TypeScipt’s syntax. Base types include number and boolean. A & B and A | B

denote intersection (𝐴 ⊓ 𝐵) and union (𝐴 ⊔ 𝐵) types. Function types 𝐴 → 𝐵 in TypeScript require

an argument name, written as (x:A) => B. Since this argument name makes no difference, we write

it as (_:A) => B in the following examples. Universal types ∀𝑎. 𝐴 are represented as <a>A (though

naming conventions usually picks capital letters for type variables). Record types are denoted as

{m: A, ...}where m is a label. As an example, the type (∀𝑎. 𝑎 → Int) → (Int ⊔ Bool) is written as
(<A>(_:A)=>number)=>(number|boolean) in TypeScript. The expression syntax is more standard, in-

cluding applications f(x), record projections e.l, and function definitions function f(x: A) {...}.

Intersection and union types. The following example shows how intersections are used to model

objects that implement 2 interfaces ({m: number} and {n: boolean}). The variable o1 is an object

that implements both interfaces m and n and has the type {m:number}&{n:boolean}. Functions that

only require either interface can be safely applied to o1. Analogously, unions can be used for

specifying objects that implement either one of two interfaces. In such cases, it is safe to apply the

common operations supported by both interfaces to the object, as illustrated by h1.
function f1(o: {m: number}): number { return o.m }
function g1(o: {n: boolean}): boolean { return o.n }
var o1 = {m: 1, n: true}; var ex1_1 = f1(o1); var ex1_2 = g1(o1)
function h1(o: {m: number, n: boolean} | {k: string, m: number}): number { return o.m }

Function overloading and backtracking. TypeScript supports a general type system with intersec-

tions and union types, with few restrictions. With this general support, function overloading can

also be modeled using intersection types.

function f2(g: ((_:number)=>number) & ((_:boolean)=>boolean)): boolean { return g(true) }

Because of this, backtracking is needed. When applying g, since the argument is a boolean, the

first function type in the intersection cannot be used to type the application. Thus, we must try

the next function, which accepts a boolean argument. TypeScript does avoid some backtracking

by employing a committed choice [Shapiro 1989] for overloaded functions: once a certain branch

is partially matched, it will commit to that branch and reject if some mismatch happens later, as

shown by f3_2.

function f3_1(f: ((_:number) => (_:number) => number) &
((_:number) => (_:boolean) => number)) { return f(1)(2) }

function f3_2(f: ((_:number) => (_:number) => number) &
((_:number) => (_:boolean) => number)) { return f(1)(true) } // rejected

Polymorphism and type applications. TypeScript also supports parametric polymorphism. The

identity function f4 below is given a polymorphic type ∀𝑎. 𝑎 → 𝑎. The function f4 is applied to 1
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directly, as ex4_1 shows, with A implicitly instantiated to number. In ex4_2, the function is explicitly
instantiated: A is first explicitly instantiated to number and the function is applied to 1.

function f4<A>(x: A): A { return x }
var ex4_1 = f4(1); var ex4_2 = f4<number>(1)

Types inferred for implicit instantiation. TypeScript avoids inferring some supertypes/subtypes as

instantiations. The following example ex5_1 is rejected by TypeScript, though common supertypes

of number and boolean, like number | boolean or Any, are valid instantiations (as illustrated by ex5_2).

Similarly, ex5_3 gets rejected though number & boolean or never are valid instantiations.

A possible justification for this behavior is that such patterns often correspond to an error instead

of intended behavior. Inferring union/intersection or top/bottom types too eagerly would hide

errors. Still, with explicit type applications, programmers can write such a program.

function f5<A>(x: A, y: A): A { return x }
var ex5_1 = f5(1, true) // rejected!
var ex5_2 = f5<boolean|number>(1, true)
function g5<A>(g1: (_:A)=>number, g2: (_:A)=>number): (_:A)=>number { return x => 1 }
var ex5_3 = g5((x: number) => 1, (y: boolean) => 2) // rejected!
var ex5_4 = g5<number&boolean>((x: number) => 1, (y: boolean) => 2)

Higher-rank polymorphism and polymorphic subtyping. Besides top-level polymorphism, Type-

Script also supports HRP, where polymorphic types can appear nested inside a type. More-

over, polymorphic subtyping is allowed: TypeScript also supports the polymorphic subtyping

for higher-rank types, demonstrated by the following example ex6. The function f6 expects

an argument with type (∀𝑎. 𝑎 → 𝑎) → Int and g6 is of type (Int → Int) → Int. Since
(Int → Int) → Int ≤ (∀𝑎. 𝑎 → 𝑎) → Int, applying f6 to g6 is valid.

function f6(f: (_:<A>(_:A) => A) => number) { return 2 }
function g6(f: (_:number) => number) { return 1 }
var ex6 = f6(g6)

The following example combines HRP with explicit instantiation. In ex7_1, the A of f7 is explicitly

instantiated to ∀𝑎. 𝑎 → 𝑎. The type of f7 then becomes (∀𝑎. 𝑎 → 𝑎) → (∀𝑎. 𝑎 → 𝑎), so f7 can

be applied to itself. The type application could also contain intersection and union types, as

demonstrated by ex7_2, where the instantiation is ∀𝑎. (𝑎 ⊓ 𝑎) → (𝑎 ⊔ 𝑎).
function f7<A>(x: A): A { return x }
var ex7_1 = f7<<A>(_:A)=>A>(f7)
var ex7_2 = f7<<A>(_:A&A)=>(A|A)>(f7)

Greedy solving strategy. Likemost previouswork onHRP, TypeScript adopts a greedy instantiation
approach in polymorphic subtyping. This means that the first candidate for instantiating a universal

variable is always chosen, even if this is not the best choice. This behavior can be demonstrated

through the following examples. Example ex8_1 is accepted because the first candidate is number and

Int → Int → Int ≤ Int → (Int ⊓ Bool) → Int. In contrast, ex8_3 is rejected because the first

candidate is number&boolean and (Int⊓ Bool) → (Int⊓ Bool) → Int ̸≤ (Int⊓ Bool) → Int →
Int. The situation for ex8_2 and ex8_4 is dual except that the correct instantiation is Int ⊔ Bool.
The use of greedy instantiation is understandable and justifiable in practice. Adopting non-greedy

instantiation could provide more precise instantiation in certain scenarios, but complicates the

algorithm. Moreover, trying to always infer the best instantiation easily runs into some fundamental

open problems in the presence of non-structural subtyping [Dudenhefner et al. 2016; Su et al. 2002].

function f8(x: (_:<A>(_:A)=>(_:A)=>number)=>number): number { return 1 }
var g8_1: (_:(_:number)=>(_:number&boolean)=>number) => number = f => 1
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var g8_2: (_:(_:(number|boolean))=>(_:number)=>number) => number = f => 1
var g8_3: (_:(_:(number&boolean))=>(_:number)=>number) => number = f => 1
var g8_4: (_:(_:number)=>(_:number|boolean)=>number) => number = f => 1
var ex8_1 = f8(g8_1); var ex8_2 = f8(g8_2)
var ex8_3 = f8(g8_3); var ex8_4 = f8(g8_4) // both rejected!

2.3 Our Approach
In this section, we provide an overview of our work. Our work studies how to combine HRP

with explicit type applications, and intersection and union types in a type system. We study three

type systems in this paper: 𝐹𝑒⊔⊓, and its two extensions 𝐹𝑒⊔⊓ with records, and 𝐹𝑒⊔⊓ with implicitly

instantiable intersection and union types. All the examples in Section 2.2 and this section (except

for those relying on order irrelevant quantification) are also encodable in 𝐹𝑒⊔⊓. The examples using

records require the extensions of 𝐹𝑒⊔⊓, whereas the other examples work with the base formulation

of 𝐹𝑒⊔⊓. The extended version of this paper illustrates all the examples written in our prototype

implementation, which are omitted here and just presented in TypeScript syntax for space reasons.

Base 𝐹𝑒⊔⊓. Our base type system 𝐹𝑒⊔⊓ combines HRP with explicit type application and intersection

and union types. It supports unrestricted intersection and union types, while still retaining good

properties, including subtyping transitivity and checking subsumption. 𝐹𝑒⊔⊓ has an algorithmic

formulation that adopts a greedy strategy to find instantiations. We aim at a modest inference for

base 𝐹𝑒⊔⊓ where intersections and unions are excluded from monotypes (i.e. implicitly instantiable

types). The algorithm is sound and complete with respect to such a specification: it can infer all

the possible monotypes under such a definition. The soundness and completeness imply that all

the good properties also hold for the algorithm. 𝐹𝑒⊔⊓ has a careful treatment of the interaction

among HRP, explicit type application, and intersection and union types to build a type system

with desirable properties. Next, we highlight several differences to TypeScript, some of which are

preferable, some of which could be arguable, but at least provide design alternatives for languages

wanting to incorporate such features. These differences provide useful alternative design choices

for both the developers of existing languages, as well as language designers interested in modeling

programming languages with similar features.

Order-relevant quantifiers. TypeScript adopts order-irrelevant universal quantifiers with explicit

type application. A possible explanation for this choice is that the initial support for HRP in

TypeScript was done around 2015, which was before the interaction between HRP and explicit type

applications was first studied [Eisenberg et al. 2016a]. The use of order-irrelevant quantifiers with

explicit type applications leads to problems because explicit type applications use the order of type

arguments to decide which arguments to instantiate. A consequence of this choice in TypeScript is

that it is not always possible to replace the type of an expression with a supertype. In other words,

checking subsumption is broken. The function h9 demonstrates the broken checking subsumption.

∀𝑎. ∀𝑏. 𝑎 → 𝑏 → 𝑎 ≤ ∀𝑎. Int → 𝑎 → Int is accepted. However, explicit instantiation with Bool
changes the LHS type to ∀𝑏. Bool → 𝑏 → Bool, but the RHS type to Int → Bool → Int. The
subtyping relation does not hold for these two new types, leading to the rejection of ex9_2.

var f9: (k: <A>(_:number)=>(_:A)=>number) => (_:boolean) => number = k => k(3)
var h9: (k: <A,B>(_:B)=>(_:A)=>B) => (b: boolean) => number = k => f9(k)
var g9: (k: <A>(_:number)=>(_:A)=>number) => (_:boolean) => number = k => k<boolean>(3)

var ex9_1: (k: <A,B>(_:B)=>(_:A)=>B) => (_:boolean) => number = k => g9(k)
var ex9_2: (k: <A,B>(_:B)=>(_:A)=>B) => (_:boolean) => number = k => k<boolean>(3) // rejected!

In 𝐹𝑒⊔⊓, we adopt order-relevant quantifiers instead. Thus, the order of quantifiers in types affects

their behavior in subtyping, interacting well with explicit type applications, and leading to a

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 71. Publication date: January 2025.



71:8 Shengyi Jiang, Chen Cui, and Bruno C. d. S. Oliveira

more principled design with HRP and explicit type applications. With order-relevant quantifiers,

∀𝑎. ∀𝑏. 𝑏 → 𝑎 → 𝑏 ≤ ∀𝑎. Int → 𝑎 → Int holds, but ∀𝑎. ∀𝑏. 𝑎 → 𝑏 → 𝑎 ≤ ∀𝑎. Int → 𝑎 → Int
does not. However, this change impacts the subtyping relation considerably and is a non-trivial

change compared to the original order-irrelevant quantifiers in HRP [Odersky and Läufer 1996].

Inference of unannotated functions with monomorphic types. 𝐹𝑒⊔⊓ supports inference of unanno-

tated functions with monomorphic types. TypeScript makes no effort in inferring the types for

unannotated functions. It simply outputs the most general type Any for arguments and return type.

The following example ex10 is accepted in TypeScript, but this is problematic since TypeScript

infers Any => Any for h10, which it is not a subtype of number => number. In contrast, the same

program is accepted in 𝐹𝑒⊔⊓ with the correct type for h10.

function f10(g: ((_:number)=>number)): number { return 1 }
var g10 = x => y => y; var h10 = g10(1)
var ex10 = f10(h10) // accepted, but the type inferred for h10 is wrong

Intersection introduction rule. In standard type systems with intersection types and 𝐹𝑒⊔⊓, if an
expression can be checked by two types, it can be checked by the intersection of these two types,

as formulated by the following informal rule
𝑒⇐𝐴1 𝑒⇐𝐴2

𝑒⇐𝐴1⊓𝐴2

. TypeScript does not support this rule

and it rejects ex11, which means that it becomes much harder to actually build an expression with

an intersection type in TypeScript
2
. Example ex11 is accepted in 𝐹𝑒⊔⊓.

function f11(g: ((_:number)=>number) & ((_:boolean)=>boolean)): number { return 1 }
var ex11 = f11(x => x) // rejected!

Less syntactic restriction for polymorphic types. TypeScript requires a function type inside the

polymorphic quantifier, i.e., it must be of the shape ∀𝑎. 𝐴 → 𝐵. So it can not express types like

∀𝑎.𝑎 or ∀𝑎.(𝑎 → Int) ⊓ (𝑎 → Bool). There is no way to define functions that take the argument

with the above type. 𝐹𝑒⊔⊓ has a more complete support for polymorphic types and it puts no other

restriction on the type inside the quantifier as long as it is a true polymorphic type.

function ex12_1(x: <A>A) {...} // rejected
function ex12_2(x: <A>(((_:A)=>boolean) & ((_:A)=>number))) {...} // rejected

More complete overloading. 𝐹𝑒⊔⊓ explores the best option from the theoretical perspective to

choose the correct branch if there is one from the overloaded function. This choice does come with

the cost of more backtracking. We believe the “committed choice” principle of TypeScript can be

adapted to 𝐹𝑒⊔⊓, as a more pragmatic option.

Compared with TypeScript on the behavior of examples presented in the previous section, our

implementation for 𝐹𝑒⊔⊓ additionally accepts f3_2 and ex8_3, while rejects ex8_2, ex8_4 and h_9, plus

all the expressions in the first example (f1, g1, . . . ) since they cannot be expressed in this system.

The rejections are for good reasons. For ex8_2 and ex8_4, with the greedy solving strategy, inferring

intersection and union types cannot be complete and can lead to inconsistent behavior. For h9, with

order-relevant quantifiers, it should not be accepted. The acceptance of f3_2 demonstrates 𝐹𝑒⊔⊓’s
better support of overloading. The acceptance of ex8_3 demonstrates 𝐹𝑒⊔⊓’s completeness in finding

solutions. The examples in this section are also accepted in our implementation.

𝐹𝑒⊔⊓ with records. Since intersection and union types are first-class in 𝐹𝑒⊔⊓, they can be used to

encode other practical features. To illustrate the expressive power of 𝐹𝑒⊔⊓ and provide support

for records, we add a simple extension that allows modeling records via overloading [Castagna

et al. 1995]. Record types are encoded by intersection types and reuse the type system of 𝐹𝑒⊔⊓ to

2
TypeScript offers a mechanism called overload signature that can partially emulate the intersection introduction rule for

functions.
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support record extension and projection. A record entry {𝑚 : number} is encoded as a function

type Label m → Int, and record extension is simply the intersection of the type of the new entry

with the type of the remaining record. Record projection is encoded as a function application. The

inference of record projection can be handled in the same way as that of function application and

reuse the rules in 𝐹𝑒⊔⊓. Under such an encoding, o1 has type (Label m → Int)⊓ (Label n → Bool)
and h1 has type (((Label m → Int)⊓(Label n → Bool))⊔((Label k → String)⊓(Label m →
Int))) → Int. Since the label type itself is also a monotype, var ex13 = (x => x.m)({m: 1}) can

also be accepted without any annotations.

This extension has a sound and complete algorithm. It should be decidable as well, with a simple

modification to our decidability proof of 𝐹𝑒⊔⊓. Our implementation for this type system additionally

accepts all the expressions in the first example (f1, g1, . . . ) in the previous section.

𝐹𝑒⊔⊓ with record and intersection/union type inference. We also study a variant where the

intersection and union of monotypes are considered monotypes. The bidirectional type system

itself still has various desirable properties. With this extended monotype definition, more programs

can be type-checked. But our greedy algorithm cannot be complete in this case: it cannot infer all
such monotypes. The incompleteness means that the algorithmic system may not enjoy all the

properties of the bidirectional type system, but it is more aligned with the practice of TypeScript

and does infer more programs which reduces the burden of the programmer. For instance, it is not

hard to find a counter-example of subtyping transitivity, exploiting the incompleteness of greedy

instantiation, for both this extended algorithmic type system and TypeScript.

var f14: <A>(_:A) => (_:A) => number = x => y => 1
var g14: (_:number | boolean) => (_:number | boolean) => number = f14
var h14_1: (_:number) => (_:boolean) => number = g14
var h14_2: (_:number) => (_:boolean) => number = f14 // rejected!

This system strictly infers more types than the base 𝐹𝑒⊔⊓, at the cost of more backtracking,

meaning all monotype instantiation without intersection and union types are guaranteed to be

found. So, it still accepts ex8_2, where Int is a valid instantiation. Our implementation for this type

system additionally accepts ex8_4, by picking Int ⊔ Bool as the instantiation. A limitation of the

type system is that it does not infer any impredicative instantiation, i.e. a polymorphic type. Thus

ex15 is accepted by TypeScript but rejected by this type system.

function f15(x: (_:<A>(_:A)=>A) => number) : number {return 1}
function h15(x:((_:<A>(_:A)=>A) => (<A>(_:A)=>A))) : number {return 1}
var ex15 = f15(h15)

We do not have the decidability proof for this system either, and it seems to require a new

proof technique since intersection and union types can be introduced by solving the instantiation.

Nonetheless, we believe that our incomplete algorithm is still terminating.

Technical innovation. Besides the investigation of the type systems, our work also provides the

following technical innovations to worklist-based algorithm and their formalization.

Syntax-directed transfer and defunctionalized continuation representation. We develop a new

syntax-directed transfer relation to relate the bidirectional type system and its algorithmic version

for the soundness and completeness proof. This transfer is built upon a defunctionalized representa-

tion of continuations so that they can be inductively defined independently. These new techniques

not only reduce substitution operations but also encode stronger invariants of the system and

simplify the formal reasoning: e.g. the continuation and the whole continuation chain must be

of certain shapes; the corresponding work in the bidirectional type system and the algorithmic
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worklist must be of the same kind, etc. Syntax-directed transfer is discussed in Section 5 and the

details of defunctionalization is introduced in the extended version of this paper.

New types of works and continuations to gather information. The original worklist algorithm [Zhao

et al. 2019] can be viewed as a linearized approximation of the tree-structure reasoning. However,

it is not completely obvious that this linearized approach can be extended to systems that rely

extensively on branching. Intersection and union types have heavy branching behavior. In particular,

the rules related to matching and type application relations in 𝐹𝑒⊔⊓ are much more complex than

in previous work, and previous techniques alone are not sufficient. We design new works and

continuations to combine results from multiple branches needed by the matching (𝐴1 ⊔ 𝐴2 ⊲ 𝜔)

and type application rule (𝐴1 ⊔𝐴2 ◦ 𝐵 ⇒⇒ 𝜔) for union types by transforming them into nested

continuations, and adding a final "combination" continuation to post-process the result. Their

defunctionalized version also requires new techniques to handle the nested continuation by creating

auxiliary works and continuations to explicitly relay the result of the first branch. These new designs

prove that worklist-based algorithms can handle such situations and are also scalable to other

(type) systems requiring similar reasoning.

Decidability proof, which gets very intricate due to intersections and unions (specifically, due to

a duplication problem and the intersection introduction rule). The measure definitions are highly

non-trivial as they now incorporate multiplication operations and recursive computation over the

entire chain of continuations. We believe our work demonstrates the feasibility of decidability

proofs for worklist-based algorithms with complex branching and provides some general recipes

for designing measures.

Coq formalization. Most previous mechanically formalized type inference algorithms based on

worklists [Cui et al. 2023; Zhao and Oliveira 2022; Zhao et al. 2019] choose Abella [Gacek 2008] as

the proof assistant. As mentioned by Cui et al., the lack of proof automation in Abella has already

outweighed the benefits of the built-in support of the abstract binding tree. For better reusability

and scalability, the formalization of 𝐹𝑒⊔⊓ starts fresh using Coq. We build a new framework based on

locally nameless representation [Charguéraud 2012] for worklist reasoning. Since the algorithm of

𝐹𝑒⊔⊓ has complex reduction behavior and our framework handles it well, we believe this framework

could scale to the formalization of a wide range of systems. Last but not least, Coq also serves as a

more recognized trust base compared to Abella.

3 Bidirectional Type System
This section introduces a bidirectional type system for 𝐹𝑒⊔⊓, which is a specification for the algorith-

mic version presented in Section 4. The type system extends Zhao and Oliveira [2022]’s 𝐹𝑒≤ type

system by adding intersection and union types and inherits several general improvements in the 𝐹𝑏≤
type system [Cui et al. 2023], which adds bounded quantification to 𝐹𝑒≤ . This type system enjoys

several desirable properties, including subtyping transitivity and checking subsumption.

3.1 Syntax and Well-formedness
Type variables 𝑎, 𝑏

Types 𝐴, 𝐵,𝐶 ::= 1 | 𝑎 | ∀𝑎. 𝐴 | 𝐴 → 𝐵 | ⊤ | ⊥ | 𝐴 ⊓ 𝐵 | 𝐴 ⊔ 𝐵

Monoypes 𝜏, 𝜎 ::= 1 | 𝑎 | 𝜏 → 𝜎

Expressions 𝑒, 𝑡 ::= 𝑥 | L M | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2 | 𝑒 : 𝐴 | 𝑒 @𝐴 | Λ𝑎. 𝑒 : 𝐴
Contexts Ψ ::= · | Ψ, 𝑥 : 𝐴 | Ψ, 𝑎 | Ψ, 𝑎
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The syntax for 𝐹𝑒⊔⊓ is shown above. 𝐹𝑒⊔⊓ includes usual types such as the unit type, type variables

𝑎 , universal types (∀𝑎.𝐴), function types (𝐴 → 𝐵) and the top (⊤) and bottom (⊥) type. In addition

𝐹𝑒⊔⊓ also has subtype variables and intersection (𝐴 ⊓ 𝐵) and union (𝐴 ⊔ 𝐵) types. Subtype variables

are needed to support order-relevant quantifiers and intersection and union types are our new

extensions. The expression syntax is standard, supporting variables (𝑥 ), unit value (L M), abstractions
(𝜆𝑥 .𝑒), annotations (𝑒 : 𝐴), explicit type applications (𝑒 @𝐴) and type abstractions (Λ𝑎. 𝑒 : 𝐴). The
support of intersection and union types in 𝐹𝑒⊔⊓ is first-class: they can appear in any part of the type

and can be used in annotations for any expressions.

Uniform type-level variable representation. 𝐹𝑒⊔⊓ still has the concept of subtype variables, to

implement order-relevant quantifiers. However, subtype variables are represented uniformly in

types as type variables to simplify reasoning. Type variables and subtype variables are distinguished

by their binding in the context: if 𝑎 ∈ Ψ then 𝑎 is a type variable; if 𝑎 ∈ Ψ then 𝑎 is a subtype

variable. This means a type must be associated with a context to be interpreted.

Monotypes and greedy instantiation. Since we would like a greedy algorithm that infers all the

predicative instantiations (i.e., monotype instantiations), we have to restrict the subtyping relation

on monotypes to be an equivalence relation, i.e. 𝜏 ≤ 𝜎 implies 𝜏 = 𝜎 [Cui et al. 2023]. This design

choice forces us to exclude intersection and union types from monotypes. Otherwise, we can

trivially have 𝜏 ≔ 1 ⊓ (1 → 1) and 𝜎 ≔ 1, breaking such property. So the monotypes in 𝐹𝑒⊔⊓ still

consist of 3 cases: unit type, type variables (i.e., 𝑎 ∈ Ψ), and function types of monotypes. On the

other hand, all impredicative instantiations, i.e., instantiations containing universal types, top and

bottom, and intersection and union types, have to be explicitly annotated.

Even if we could have taken a non-greedy approach, introducing intersection, union, top and

bottom types in the solution domain is problematic. This would lead us to the non-structural
subtyping satisfiability/entailment problem3

, where types with different shapes can be related,

bringing fundamental obstacles for bounding the depth of substitutions via any kind of standard

occurs-check. That is, in most algorithms with unification [Dunfield and Krishnaswami 2013],

𝑎 ≤ 𝜏 (𝜏 ≠ 𝑎) can be safely rejected without actually unifying 𝑎 with 𝜏 , if 𝑎 ∈ fv(𝜏), because
there is no solution for 𝑎 anyway. This check ensures that each successful unification always

eliminates one existential variable. However, this is false when the solution domain is equipped

with a non-structural subtyping relation (e.g., ⊥ ≤ →, ⊓ ≤ →, and ∀ ≤ →). Take 𝜏 = 𝑎 → 1 as an

example, ⊥, 1 ⊓ (1 → 1), ∀𝑎. 𝑎 all become valid solutions. What is worse, the number of solutions

can even be infinite ((⊥ → 1) → 1, . . . , (1⊓ (1 → 1)) ⊓ ((1⊓ (1 → 1)) → 1), . . . ,∀𝑎. 𝑎 → 1, . . . ).
The decidability of non-structural subtyping satisfiability for intersection types [Dudenhefner et al.

2016] and entailment for top and bottom types [Su et al. 2002] remain open problems.

Well-formedness. Well-formedness ensures that all references to (type) variables are valid from

the context. To retain the subsumption property under explicit type application, besides order

relevant quantifiers, we also have to ensure that the universal type ∀𝑎. 𝐴 and type abstraction

Λ𝑎. 𝑒 : 𝐴 are indeed polymorphic, i.e., 𝑎 is actually used by 𝐴. However, after adding intersection

and union types, the free-variable check also requires an update. Specifically, for intersection, we

need the variable to appear in both branches, as formulated by the following rules.

𝑎 ∈𝑠 𝑎
𝑎 ∈𝑠 𝐴

𝑎 ∈𝑠 ∀𝑏 . 𝐴
𝑎 ∈𝑠 𝐴

𝑎 ∈𝑠 𝐴 → 𝐵

𝑎 ∈𝑠 𝐵
𝑎 ∈𝑠 𝐴 → 𝐵

𝑎 ∈𝑠 𝐴 𝑎 ∈𝑠 𝐵
𝑎 ∈𝑠 𝐴 ⊓ 𝐵

𝑎 ∈𝑠 𝐴
𝑎 ∈𝑠 𝐴 ⊔ 𝐵

𝑎 ∈𝑠 𝐵
𝑎 ∈𝑠 𝐴 ⊔ 𝐵

3
Satisfiability means whether a set of constraints has a solution. Entailment means whether a set of constraints entails

another one, and is related to the simplification and transformation of constraints.
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Ψ ⊢ 𝐴 ≤ 𝐵 A is a subtype of B

Ψ ⊢ 1 ≤ 1
≤1

Ψ ⊢ 𝐴 ≤ ⊤
≤⊤

Ψ ⊢ ⊥ ≤ 𝐴
≤⊥

Ψ ⊢ 𝑎 ≤ 𝑎
≤TVar

Ψ ⊢ 𝐵1 ≤ 𝐴1 Ψ ⊢ 𝐴2 ≤ 𝐵2

Ψ ⊢ 𝐴1 → 𝐴2 ≤ 𝐵1 → 𝐵2

≤→
Ψ ⊢ 𝜏 Ψ ⊢ [𝜏/𝑎]𝐴 ≤ 𝐵 𝐵≠∀

Ψ ⊢ ∀𝑎. 𝐴 ≤ 𝐵
≤∀L

Ψ, 𝑎 ⊢ 𝐴 ≤ 𝐵

Ψ ⊢ ∀𝑎. 𝐴 ≤ ∀𝑎. 𝐵
≤∀

Ψ ⊢ 𝐴 ≤ 𝐵1 Ψ ⊢ 𝐴 ≤ 𝐵2

Ψ ⊢ 𝐴 ≤ 𝐵1 ⊓ 𝐵2

≤⊓R
Ψ ⊢ 𝐴1 ≤ 𝐵

Ψ ⊢ 𝐴1 ⊓𝐴2 ≤ 𝐵
≤⊓L1

Ψ ⊢ 𝐴2 ≤ 𝐵

Ψ ⊢ 𝐴1 ⊓𝐴2 ≤ 𝐵
≤⊓L2

Ψ ⊢ 𝐴1 ≤ 𝐵 Ψ ⊢ 𝐴2 ≤ 𝐵

Ψ ⊢ 𝐴1 ⊔𝐴2 ≤ 𝐵
≤⊔L

Ψ ⊢ 𝐴 ≤ 𝐵1

Ψ ⊢ 𝐴 ≤ 𝐵1 ⊔ 𝐵2

≤⊔R1
Ψ ⊢ 𝐴 ≤ 𝐵2

Ψ ⊢ 𝐴 ≤ 𝐵1 ⊔ 𝐵2

≤⊔R2

Fig. 2. Subtyping

Otherwise, with the original free variable check in Zhao and Oliveira [2022] and allowing types

like ∀𝑎.∀𝑏.(𝑎 ⊓ 𝑏), the stability under polytype substitutions is broken. We can modify the example

with an unused type variables by Zhao and Oliveira, ∀𝑎.∀𝑏.𝑎 ≤ ∀𝑎.𝑎 to ∀𝑎.∀𝑏.(𝑎 ⊓𝑏) ≤ ∀𝑎.𝑎 where

both 𝑎 and 𝑏 appear in the body of the polymorphic type. By explicitly applying ∀𝑎.𝑎 → 𝑎 twice,

we will first get ∀𝑏.(∀𝑎.𝑎 → 𝑎 ⊓ 𝑏) ≤ ∀𝑎.𝑎 → 𝑎, and then (∀𝑎.𝑎 → 𝑎) ⊓ (∀𝑎.𝑎 → 𝑎) ≤ (∀𝑎.𝑎 →
𝑎) → (∀𝑎.𝑎 → 𝑎). The last subtyping fails since it would require impredicative instantiation. The

intuition behind this stronger free variable check is that the subtyping of intersection types may

completely discard one branch. Thus, we need to be conservative enough so that no matter which

branch remains, 𝑎 should be in it. Due to the asymmetry of ≤∀ and ≤∀L, union types can use the

usual free variable check.

3.2 Subtyping
Figure 2 shows the rules of subtyping relation. The basic rules are standard, including rules ≤→,

≤⊤, and ≤⊥. Rules ≤⊓R, ≤⊓L1, ≤⊓L2, ≤⊔L, ≤⊔R1, ≤⊔R2 are newly added to support subtyping in

the presence of intersection and union types. These six rules are standard. The remaining rules

are key to supporting universal types. Rule ≤∀L and ≤∀ deal with HRP. Rule ≤∀L states that a

universal type is a subtype of another (non-universal) type 𝐵 as long as the subtyping relation

holds after instantiating the universal type with a monotype 𝜏 . Rule ≤∀ states that two universal

types are subtypes if their bodies are subtypes. The two rules dealing with universal types ensure

that the order of the universal quantifiers is relevant [Eisenberg et al. 2016a].

The interaction between higher-rank polymorphism and intersection and union types requires a

careful treatment of the prioritization between rule ≤∀ and ≤∀L. In previous systems with these

two rules [Cui et al. 2023; Zhao and Oliveira 2022], a simple syntactic check “𝐵 ≠ ∀.∗” in rule ≤∀L
ensures that rule ≤∀ always takes priority when both sides are universal types (this prioritization

is essential to support explicit type application). This check becomes inappropriate in the presence

of intersection and union types, because it treats (∀𝑎. 𝐴) ⊓ (∀𝑎. 𝐴) and ∀𝑎. 𝐴 differently while

these two types should be considered equivalent. Adopting the same syntactic check would break

the transitivity of subtyping as the following counterexample demonstrates:

• 𝐴 ≤ 𝐵 : ∀𝑎. ∀𝑏 . 𝑏 → 𝑎 ≤ (∀𝑎. 𝑎 → 1) ⊓ (∀𝑎. 𝑎 → 1)
• 𝐵 ≤ 𝐶 : (∀𝑎. 𝑎 → 1) ⊓ (∀𝑎. 𝑎 → 1) ≤ (∀𝑎. 𝑎 → 1)
• 𝐴 ̸≤ 𝐶 : ∀𝑎. ∀𝑏 . 𝑏 → 𝑎 ̸≤ ∀𝑎. 𝑎 → 1

This counterexample is because𝐴 ≤ 𝐵 can use the ≤∀Lwhile𝐴 ≤ 𝐶 cannot: the outer intersection

over the inner universal type in 𝐵 bypasses the syntactic check. A similar situation also happens

when RHS is a union type (e.g., change 𝐵 to (∀𝑎. 𝑎 → 1) ⊔ (∀𝑎. 𝑎 → 1)) and when 𝐵 is not
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idempotent to𝐶 (e.g., change 𝐵 to (∀𝑎. 𝑎 → 1) ⊔⊥). The direct solution to avoid such a bypass is to

always prioritize the rules for intersection and union types (rules ≤⊓R, ≤⊔R1 and ≤⊔R2) over rule
≤∀L when LHS is a ∀ and RHS is an intersection or union type, leading to the following syntactic

check for rule ≤∀L.
Ψ ⊢ 𝜏 Ψ[𝜏/𝑎]𝐴 ≤ 𝐵 𝐵 ≠ ∀. ∗ or ∗ ⊓ ∗ or ∗ ⊔∗

Ψ ⊢ ∀𝑎. 𝐴 ≤ 𝐵

This version of rule ≤∀L indeed yields a subtyping relation with reflexivity, transitivity, and stability

under polytype instantiation. However, it rejects many reasonable examples where we should expect

the implicit instantiation to work, e.g. ∀𝑎. (𝑎 → 1) ⊔ (𝑎 → (1 → 1)) ≤ (1 → 1)⊔ (1 → (1 → 1)).
To solve this deficiency of expressive power, we employ a syntactic check 𝐵≠∀

that examines deeply

into the type structure of B. This check requires both branches of intersection types and either

branch of union types to be not a universal type, bottom type, or subtype variable. The exclusion

of universal type and bottom type is crucial for transitivity, and the exclusion of subtype variables

is necessary for stability under polytype instantiation. The complete rules are:

1≠∀ ⊤≠∀
𝑎 ∈ Ψ

𝑎≠∀ 𝐴 → 𝐵≠∀
𝐴≠∀
1

𝐴≠∀
2

𝐴1 ⊓𝐴≠∀
2

𝐴≠∀
1

𝐴1 ⊔𝐴≠∀
2

𝐴≠∀
2

𝐴1 ⊔𝐴≠∀
2

This syntactic check enjoys a good semantic interpretation that if 𝐴≠∀
then forall 𝑎 ∈ Ψ, 𝐵,𝐶 ,

Ψ ⊢ [𝐶/𝑎]𝐴 ̸≤ ∀𝑎. 𝐵. Thus, ≤∀L with this syntactic check is strictly more expressive than 𝐹𝑒≤ or

the simpler syntactic check discussed earlier. Another subtle interaction that happens between

universal types and intersection types is that a universal quantifier could be instantiated multiple

times when the RHS is an intersection type. For instance, the following example is accepted:

∀𝑎. (𝑎 → 1) ⊓ (𝑎 → (1 → 1)) ≤ (1 → 1) ⊓ ((1 → 1) → (1 → 1)).

Metatheory. With such design, reflexivity, and transitivity hold for this subtyping relation. As

shown below, stability under polytype-instantiation (Theorem 2.1) holds as well. Some proof details,

including the generalized theorems to conduct inductions, are discussed in Section 5.

Theorem 3.1 (Subtyping Reflexivity). Given ⊢ Ψ and Ψ ⊢ A, then Ψ ⊢ A ≤ A.

Theorem 3.2 (Subtyping Transitivity). Given ⊢ Ψ, Ψ ⊢ 𝐴,Ψ ⊢ 𝐵 and Ψ ⊢ 𝐶 , if Ψ ⊢ A ≤ B, and
Ψ ⊢ B ≤ C then Ψ ⊢ A ≤ C.

3.3 Typing
Figure 3 shows the bidirectional type system with the checking and inference judgments. Variables,

annotations, unit value and type abstractions are directly inferable, and they are dealt with by

rules ⇒Var, ⇒Anno, ⇒Unit and ⇒Λ, respectively. We also allow the inference of abstractions

as long as their types are monotypes, as in rule⇒→Mono. The inference of application and type

application is delegated to two modular judgments, matching and type application. Checking

judgments allow abstractions to be checked by a function type (⇐→) or ⊤ (⇐→⊤). An expression

can also be checked against a supertype, if it infers a subtype (⇐Sub). ⇐⊓, ⇐⊔1, and ⇐⊔2 are

the checking introduction rules of intersection and union types. Rule ⇐⊓ allows a term that

has uniform behavior over several types to be given an intersection type of all these types, as

𝜆𝑥.𝑥 : (1 → 1) ⊓ ((1 → 1) → (1 → 1)). Rules for union introduction are needed since the

subsumption rule ⇐Sub does not cover the case when 𝑒 cannot infer either branch.

Matching. The matching judgment Ψ ⊢ 𝐴 ⊲𝐵 → 𝐶 in Figure 3 states that a type𝐴 can be regarded

as a subtype of function type 𝐵 → 𝐶 , so that a term of type 𝐴 can be applied to another term of

type 𝐵 and the result will be of type𝐶 . We adopt this design from 𝐹𝑏≤ [Cui et al. 2023], which uses a

similar judgment to deal with HRP with bounded quantification. Rules ⊲→, ⊲⊥ are the base cases,
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Ψ ⊢ 𝑒 ⇔ 𝐴 𝑒 is checked against/infers 𝐴

Ψ, 𝑥 : 𝐴 ⊢ 𝑒 ⇐ 𝐵

Ψ ⊢ 𝜆𝑥 . 𝑒 ⇐ 𝐴 → 𝐵
⇐→

Ψ, 𝑥 : ⊥ ⊢ 𝑒 ⇐ ⊤
Ψ ⊢ 𝜆𝑥 . 𝑒 ⇐ ⊤

⇐→⊤
Ψ ⊢ 𝑒 ⇒ 𝐴 Ψ ⊢ 𝐴 ≤ 𝐵

Ψ ⊢ 𝑒 ⇐ 𝐵
⇐Sub

Ψ ⊢ 𝑒 ⇐ 𝐴 Ψ ⊢ 𝑒 ⇐ 𝐵

Ψ ⊢ 𝑒 ⇐ 𝐴 ⊓ 𝐵
⇐⊓

Ψ ⊢ 𝑒 ⇐ 𝐴

Ψ ⊢ 𝑒 ⇐ 𝐴 ⊔ 𝐵
⇐⊔1

Ψ ⊢ 𝑒 ⇐ 𝐵

Ψ ⊢ 𝑒 ⇐ 𝐴 ⊔ 𝐵
⇐⊔2

(𝑥 : 𝐴) ∈ Ψ

Ψ ⊢ 𝑥 ⇒ 𝐴
⇒Var

Ψ ⊢ 𝑒 ⇐ 𝐴

Ψ ⊢ (𝑒 : 𝐴) ⇒ 𝐴
⇒Anno

Ψ ⊢ 𝜎 → 𝜏 Ψ, 𝑥 : 𝜎 ⊢ 𝑒 ⇐ 𝜏

Ψ ⊢ 𝜆𝑥 . 𝑒 ⇒ 𝜎 → 𝜏
⇒→Mono

Ψ ⊢ L M ⇒ 1
⇒Unit

Ψ, 𝑎 ⊢ 𝑒 ⇐ 𝐴

Ψ ⊢ Λ𝑎. 𝑒 : 𝐴 ⇒ ∀𝑎. 𝐴
⇒Λ

Ψ ⊢ 𝑒1 ⇒ 𝐴 Ψ ⊢ 𝐴 ⊲ 𝐵 → 𝐶 Ψ ⊢ 𝑒2 ⇐ 𝐵

Ψ ⊢ 𝑒1 𝑒2 ⇒ 𝐶
⇒App

Ψ ⊢ 𝑒 ⇒ 𝐴 Ψ ⊢ 𝐴 ◦ 𝐵 ⇒⇒ 𝐶

Ψ ⊢ 𝑒 @𝐵 ⇒ 𝐶
⇒TApp

Ψ ⊢ 𝐴 ⊲ 𝐵 → 𝐶 A matches an arrow type 𝐵 → 𝐶

Ψ ⊢ 𝐴 → 𝐵 ⊲𝐴 → 𝐵
⊲→

Ψ ⊢ ⊥ ⊲ ⊤ → ⊥
⊲⊥

Ψ ⊢ 𝐴1 ⊲ 𝐵1 → 𝐶1 Ψ ⊢ 𝐴2 ⊲ 𝐵2 → 𝐶2

Ψ ⊢ (𝐴1 ⊔𝐴2) ⊲ (𝐵1 ⊓ 𝐵2) → (𝐶1 ⊔𝐶2)
⊲⊔

Ψ ⊢ 𝐴1 ⊲ 𝐵 → 𝐶

Ψ ⊢ (𝐴1 ⊓𝐴2) ⊲ 𝐵 → 𝐶
⊲⊓1

Ψ ⊢ 𝐴2 ⊲ 𝐵 → 𝐶

Ψ ⊢ (𝐴1 ⊓𝐴2) ⊲ 𝐵 → 𝐶
⊲⊓2

Ψ ⊢ 𝜏 Ψ ⊢ ([𝜏/𝑎]𝐴) ⊲ 𝐵 → 𝐶

Ψ ⊢ ∀𝑎. 𝐴 ⊲ 𝐵 → 𝐶
⊲∀

Ψ ⊢ 𝐴 ◦ 𝐵 ⇒⇒ 𝐶 A type-applied to B infers C

Ψ ⊢ ∀𝑎. 𝐴 ◦ 𝐵 ⇒⇒ [𝐵/𝑎]𝐴
◦⇒⇒∀

Ψ ⊢ ⊥ ◦𝐴 ⇒⇒ ⊥
◦⇒⇒⊥

Ψ ⊢ 𝐴1 ◦ 𝐵 ⇒⇒ 𝐶

Ψ ⊢ (𝐴1 ⊓𝐴2) ◦ 𝐵 ⇒⇒ 𝐶
◦⇒⇒⊓1

Ψ ⊢ 𝐴2 ◦ 𝐵 ⇒⇒ 𝐶

Ψ ⊢ (𝐴1 ⊓𝐴2) ◦ 𝐵 ⇒⇒ 𝐶
◦⇒⇒⊓2

Ψ ⊢ 𝐴1 ◦ 𝐵 ⇒⇒ 𝐶1 Ψ ⊢ 𝐴2 ◦ 𝐵 ⇒⇒ 𝐶2

Ψ ⊢ (𝐴1 ⊔𝐴2) ◦ 𝐵 ⇒⇒ (𝐶1 ⊔𝐶2)
◦⇒⇒⊔

Fig. 3. Checking, Inference, Matching and Type Application

since a function type or ⊥ can be regarded as a function type directly. Rule ⊲∀ converts a universal

type to a function type by guessing a monotype 𝜏 for instantiation and continuing the conversion

to the instantiated body. Since intersection and union types can also be subtypes of function types,

we need to extend the matching relation to deal with such cases, as shown in rules ⊲⊓1, ⊲⊓2 and

⊲⊔. We cannot output the intersection of both function types, since the intersection of function

types cannot be regarded as a function type due to the lack of a distributivity rules between the

function type and intersection type in 𝐹𝑒⊔⊓: (𝐴1 → 𝐵1) ⊓ (𝐴2 → 𝐵2) ≤ (𝐴1 ⊔𝐴2) → (𝐵1 ⊓ 𝐵2).
Matching can be viewed as a syntax-directed transformation to get a function-type like supertype

of 𝐴, as formulated by the following lemma.

Lemma 3.3 (Specification of Matching). Given ⊢ Ψ and Ψ ⊢ 𝐴,
(1) if Ψ ⊢ A ⊲ B → C, then Ψ ⊢ A ≤ B → C;
(2) if Ψ ⊢ A ≤ B → C, then exists B′,C′ s.t. Ψ ⊢ A ⊲ B′ → C′ and Ψ ⊢ B′ → C′ ≤ B → C.

Type application. The type application judgment Ψ ⊢ 𝐴 ◦ 𝐵 ⇒⇒ 𝐶 in Figure 3 states that a type

𝐴 can be regarded as a subtype of a universal type so that it can be type-applied to type 𝐵, and

the result type is 𝐶 . Rule ◦⇒⇒∀ and ◦⇒⇒⊥ are the base cases where the type-application result is
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known: [𝐵/𝑎]𝐴 and ⊥. Similarly to matching, we also need to extend the type application to deal

with intersection and union types. Rule ◦⇒⇒⊓1 and ◦⇒⇒⊓2 choose one branch of the intersection

type to proceed. ∀𝑎. 𝐴 or ∀𝑎. 𝐵 is the best approximation of ∀𝑎. 𝐴 ⊓ 𝐵 with a universal-type shape

since 𝐹𝑒⊔⊓ does not have a distributivity rule between the universal type and intersection type:

∀𝑎. 𝐴 ⊓ ∀𝑎. 𝐵 ≤ ∀𝑎. (𝐴 ⊓ 𝐵). Rule ◦⇒⇒⊔ traverses both branches and combines the result. Type

application can be viewed as a syntax-directed transformation to get a universal-type like supertype

of 𝐴 and type-apply it to 𝐵 (without considering ⊥), as formulated by the following lemma. A more

general version, where𝐴 containing ⊥ is considered, is shown in the extended version of this paper.

Lemma 3.4 (Specification of Type-Application). Given ⊢ Ψ, Ψ ⊢ 𝐴 and Ψ ⊢ 𝐵,
(1) if 𝐴 ̸⊥ and Ψ ⊢ A ◦ B ⇒⇒ C, then exists A’, Ψ ⊢ ∀a.A′,Ψ ⊢ A ≤ ∀a.A′, C = [B/a]A′;
(2) if Ψ ⊢ ∀𝑎.𝐴′ and Ψ ⊢ A ≤ ∀a . A′, then exists C s.t. Ψ ⊢ A ◦ B ⇒⇒ C and Ψ ⊢ C ≤ [B/a]A′.

4 Algorithmic System
This section introduces an algorithmic type system that implements the specification of 𝐹𝑒⊔⊓
presented in Section 3 using the worklist approach [Zhao et al. 2019]. A worklist Γ is an ordered
list of both (type) variable declarations (with bindings) and works, whose syntax is introduced in

Sec. 4.1. The algorithm can be viewed as a non-deterministic rewriting system over the worklist. In

particular, at each step, one or more rules (introduced in Sec. 4.2) could be applied according to

the last entry in the worklist to reduce (or, rewrite) the worklist. If a worklist can be reduced to an

empty worklist, it is accepted. Otherwise, it is rejected. This algorithmic type system is proven to

be sound and complete with respect to the bidirectional specification and decidable.

4.1 Syntax
The syntax of the algorithmic system is shown below. A new type of variables, existential variables,

are introduced as placeholders for unknown implicit arguments and will finally be solved to a

concrete monotype. Existential variables themselves are also monotypes. Type variables, subtype

variables, and existential variables are represented uniformly at the type level and distinguished by

their bindings in the algorithmic worklist, 𝑎, 𝑎, �̂�, respectively. Due to this uniform representation,

algorithmic types have the same syntax as declarative types
4
. The expression syntax remains

unchanged as well. Works𝑤 are judgments to process. Two new works are added to 𝐹𝑒⊔⊓ compared

with 𝐹𝑏≤ : union matching (𝐴1 → 𝐵1) ⋓⊲ (𝐴2 → 𝐵2) ▶ 𝜔 and union type application 𝐴1 ⋓◦ 𝐴2 ▶ 𝜔

to combine the results for union types in matching and type application. Their function will be

introduced in detail in rules related to them.

Work 𝑤 ::= 𝐴 ≤ 𝐵 | 𝑒 ⇐ 𝐴 | 𝑒 ⇒𝛼 𝜔 | 𝐴 ◦ 𝐵 ⇒⇒𝛼 𝜔 | 𝐴 ⊲𝛼,𝛽 𝜔 |
𝐴 → 𝐵 • 𝑒 ⇒⇒𝛼 𝜔 | (𝐴1 → 𝐵1) ⋓⊲ (𝐴2 → 𝐵2) ▶𝛼 𝜔 |
𝐴1 ⋓◦ 𝐴2 ▶𝛼 𝜔

Algorithmic worklist Γ ::= · | Γ, 𝑎 | Γ, 𝑎 | Γ, �̂� | Γ, 𝑥 : 𝐴 | Γ ⊩ 𝜔
Unlike previous work [Cui et al. 2023; Zhao and Oliveira 2022; Zhao et al. 2019], we present the

continuation-passing style using a higher-order abstract syntax rather than the substitution-based

syntax. The first difference is that continuations are given a new syntactic symbol 𝜔 , which is

syntactic sugar for𝐴 ⊃ 𝑤 , i.e., a meta function from type(s) towork. The argument for a continuation

is represented with Greek letters 𝛼, 𝛽,𝛾 . The continuation application is now presented as 𝜔 ⋄𝐴.
This representation is more aligned with our formalization. Γ ⊢ 𝐴, Γ ⊢ 𝑒 , Γ ⊢ 𝑤 , and ⊢ Γ denote

the well-formedness of each syntactic category, whose detailed definitions can be found in the

4
We use declarative types to mean types in the bidirectional system for brevity, similar for monotypes, expressions, etc.
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Γ −→ Γ′ Γ worklist-reduces to Γ′

Γ ⊩ 1 ≤ 1 −→5 Γ

Γ ⊩ 𝑎 ≤ 𝑎 −→6 Γ

Γ ⊩ 𝐴 ≤ ⊤ −→7 Γ

Γ ⊩ ⊥ ≤ 𝐴 −→8 Γ

Γ ⊩ 𝐴1 → 𝐴2 ≤ 𝐵1 → 𝐵2 −→9 Γ ⊩ 𝐵1 ≤ 𝐴1 ⊩ 𝐴2 ≤ 𝐵2

Γ ⊩ ∀𝑎. 𝐴 ≤ 𝐵 −→10 Γ, �̂� ⊩ 𝐴 ≤ 𝐵

Γ ⊩ ∀𝑎. 𝐴 ≤ ∀𝑎. 𝐵 −→11 Γ, 𝑎 ⊩ 𝐴 ≤ 𝐵

Γ ⊩ 𝐴 ≤ 𝐵2 ⊓ 𝐵2 −→12 Γ ⊩ 𝐴 ≤ 𝐵1 ⊩ 𝐴 ≤ 𝐵2

Γ ⊩ 𝐴1 ⊓𝐴2 ≤ 𝐵 −→13 Γ ⊩ 𝐴1 ≤ 𝐵

Γ ⊩ 𝐴1 ⊓𝐴2 ≤ 𝐵 −→14 Γ ⊩ 𝐴2 ≤ 𝐵

Γ ⊩ 𝐴1 ⊔𝐴2 ≤ 𝐵 −→15 Γ ⊩ 𝐴1 ≤ 𝐵 ⊩ 𝐴2 ≤ 𝐵

Γ ⊩ 𝐴 ≤ 𝐵1 ⊔ 𝐵2 −→16 Γ ⊩ 𝐴 ≤ 𝐵1

Γ ⊩ 𝐴 ≤ 𝐵1 ⊔ 𝐵2 −→17 Γ ⊩ 𝐴 ≤ 𝐵2

Γ ⊩ 𝑎 ≤ 𝜏 −→18 {𝜏/𝑎}Γ
Γ ⊩ 𝜏 ≤ 𝑎 −→19 {𝜏/𝑎}Γ

Γ ⊩ 𝑎 ≤ 𝐴 → 𝐵 −→20 {𝑎1 → 𝑎2/𝑎}(Γ, �̂�1, �̂�2, 𝑎 ≤ 𝐴 → 𝐵)

Γ ⊩ 𝐴 → 𝐵 ≤ 𝑎 −→21 {𝑎1 → 𝑎2/𝑎}(Γ, �̂�1, �̂�2, 𝐴 → 𝐵 ≤ 𝑎)

when 𝐵≠∀

when �̂� ∈ Γ ∧ 𝑎 ∉ fv(𝜏)
when �̂� ∈ Γ ∧ 𝑎 ∉ fv(𝜏)

when �̂� ∈ Γ ∧ Γ ⊬𝑚 𝐴 → 𝐵

when �̂� ∈ Γ ∧ Γ ⊬𝑚 𝐴 → 𝐵

Fig. 4. Algorithmic Worklist Reduction (Subtyping)

extended version of this paper. Γ −→ Γ′ denotes the one-step worklist reduction and Γ −→∗ Γ′

denotes the zero-or-more-step worklist reduction.

4.2 Algorithmic Rules
All the reduction rules are defined in a single relation but, for clarity of presentation, we separate

them into three parts: garbage collection, subtyping, and typing. The scoping mechanism of the

worklist ensures that variables can never be referred to by any entries that appear before them.

Thus, it is safe to remove them if they are the last entry in the worklist.

Γ, 𝑎 −→1 Γ Γ, 𝑎 −→2 Γ Γ, �̂� −→3 Γ Γ, 𝑥 : 𝐴 −→4 Γ

The garbage collection of (type) variables is intuitive. The garbage collection of the existential

variable �̂� means that this existential variable is under-constrained and can be solved to any

monotype (and trivially, to 1).

Subtyping (Rules 5-21, Figure 4). These 17 rules can be classified into two categories, where

the first contains rules 5-17, and the second contains rules 18-21. Most rules in the first category

are similar to their specification counterparts. Rule 6 also deals with the reflexivity of existential

variables. The most significant changes are in rule 10, where an existential variable �̂� is introduced

instead of guessing the monotype 𝜏 instantiation in its specification counterpart rule ≤∀L. We

abuse the notation for the side condition 𝐵≠∀
as it is now defined for algorithmic types. The check

is almost the same with one new base case
�̂�∈Γ
𝑎≠∀

. Rules 12-17 are new, but they are aligned with
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{𝜏 /̂𝑎}Γ Substitute �̂� by 𝜏 in Γ

{𝜏 /̂𝑎}(Γ, �̂�) =1 Γ

{𝜏 /̂𝑎}(Γ, 𝛽) =2 {𝜏 /̂𝑎}Γ, 𝛽 when 𝛽 ∉ fv(𝜏)
{𝜏 /̂𝑎}(Γ1, �̂�, Γ2, 𝛽) =3 {𝜏 /̂𝑎}(Γ1, 𝛽, �̂�, Γ2) when 𝛽 ∈ fv(𝜏)
{𝜏 /̂𝑎}(Γ, 𝑏) =4 {𝜏 /̂𝑎}Γ, 𝑏 when 𝑏 ∉ fv(𝜏)
{𝜏 /̂𝑎}(Γ, ˜𝑏) =5 {𝜏 /̂𝑎}Γ, ˜𝑏
{𝜏 /̂𝑎}(Γ, 𝑥 : 𝐴) =6 {𝜏 /̂𝑎}Γ, 𝑥 : [𝜏 /̂𝑎]𝐴
{𝜏 /̂𝑎}(Γ ⊩ 𝑤) =7 {𝜏 /̂𝑎}Γ ⊩ [𝜏 /̂𝑎]𝑤

Fig. 5. Worklist Substitution

their specification counterparts. In rules 9, 12, and 15, multiple new entries are pushed back to the

worklist, while their specification counterparts check each new entry separately.

The rules in the second category solve the existential variables, i.e., substituting the existential

variable with the monotype found. We adopt the polytype splitting technique [Cui et al. 2023],

which solves an existential variable to an arbitrary monotype (instead of just base monotypes like 𝑎

and 1) and only splits it to two fresh existential variables when it is compared with a polymorphic

function type (instead of an arbitrary function type). The occurs-check condition in rules 18 and 19

prevents the possible non-termination of the algorithm caused by judgments like �̂� ≤ 1 → �̂�.

Compared to the original polytype splitting rule used by Cui et al., we find that it is unnecessary

(in the sense of keeping the decidability of the algorithm) to add the occurs-check condition in

rule 20 and 21. This helps pre-rejecting incorrect subtyping relations in earlier type systems, but

the same naive occurs-check (𝑎 ∉ fv(𝐴 → 𝐵)) would cause the loss of completeness in 𝐹𝑒⊔⊓. For
instance, 𝑎 ≤ (𝑎 ⊓ 1) → 1, �̂� ∈ Γ would be rejected but 1 → 1 is a valid solution for 𝑎 .

The substitution operations in these four rules are encapsulated in the worklist substitution

{𝜏 /̂𝑎}Γ. The {𝜏 /̂𝑎}Γ operation not only substitutes every occurrence of �̂� to 𝜏 in Γ and removes �̂�,

but also performs necessary reordering of other existential variables. Reordering is needed since

the monotype may contain some existential variables that originally appear after the target �̂�. To

keep the well-formedness of the worklist, we need to move these referred existential variables in

front of the target. Note this process always narrows the scope of existential variables but never

widens it. The concrete process of worklist substitution is shown in Figure 5.

Typing (Rules 22-50, Figure 6). These 29 rules can be further split into 4 categories. Rules 22-28 for

checking , rules 29-35 for inference, rules 36-42 for matching and rules 45-50 for type application.

Rules 22-24 are the algorithmic counterparts of ⇐Sub, ⇐→ and ⇐→⊤. Rules 25-27 are new,
corresponding to rules ⇐⊓, ⇐⊔1 and ⇐⊔2 in the specification. The premise of the inference

judgment in ⇐Sub is modified to the continuation-passing style, whose LHS operand is unknown

before the inference judgment finishes. Rule 28 is added for existential variables. An existential

variable can be used to check an abstraction if it can finally be resolved to a function type, so we

substitute it with two fresh existential variables 𝑎1 → 𝑎2 using the worklist substitution.

Rules 29-35 are the algorithmic counterparts of⇒Var,⇒Anno,⇒Λ,⇒Unit,⇒App,⇒TApp and
⇒→Mono. Rules 29-32 are the base cases where the type is fully determined from the expression

so that we can apply the continuation, waiting for the result to this known type. Rules 30 and 31

also push 𝑒 ⇐ 𝐴 to the worklist to check the expression 𝑒 with type 𝐴. Rule 33 infers the result of

the application by inferring the type of 𝑒1 and creating a matching and an application inference

continuation. The matching continuation waits for the inference result and passes its result to the

application inference continuation. The inference application, after becoming a work, is processed

by rule 44 to check the expression 𝑒2 with the first received result (i.e., the domain type) and pass
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Γ −→ Γ′ Γ worklist-reduces to Γ′

Γ ⊩ 𝑒 ⇐ 𝐵 −→22 Γ ⊩ 𝑒 ⇒𝛼 𝛼 ≤ 𝐵

Γ ⊩ 𝜆𝑥 . 𝑒 ⇐ 𝐴 → 𝐵 −→23 Γ, 𝑥 : 𝐴 ⊩ 𝑒 ⇐ 𝐵

Γ ⊩ 𝜆𝑥. 𝑒 ⇐ ⊤ −→24 Γ, 𝑥 : ⊥ ⊩ 𝑒 ⇐ ⊤
Γ ⊩ 𝑒 ⇐ 𝐴1 ⊓𝐴2 −→25 Γ ⊩ 𝑒 ⇐ 𝐴1 ⊩ 𝑒 ⇐ 𝐴2

Γ ⊩ 𝑒 ⇐ 𝐴1 ⊔𝐴2 −→26 Γ ⊩ 𝑒 ⇐ 𝐴1

Γ ⊩ 𝑒 ⇐ 𝐴1 ⊔𝐴2 −→27 Γ ⊩ 𝑒 ⇐ 𝐴2

Γ ⊩ 𝜆𝑥 . 𝑒 ⇐ 𝑎 −→28 {𝑎1 → 𝑎2/𝑎}(Γ, �̂�1, �̂�2 ⊩ 𝜆𝑥.𝑒 ⇐ 𝑎)
Γ ⊩ 𝑥 ⇒𝛼 𝜔 −→29 Γ ⊩ 𝜔 ⋄𝐴

Γ ⊩ 𝑒 : 𝐴 ⇒𝛼 𝜔 −→30 Γ ⊩ 𝜔 ⋄𝐴 ⊩ 𝑒 ⇐ 𝐴

Γ ⊩ (Λ𝑎. 𝑒 : 𝐴) ⇒𝛼 𝜔 −→31 Γ ⊩ 𝜔 ⋄ (∀𝑎. 𝐴), 𝑎 ⊩ 𝑒 ⇐ 𝐴

Γ ⊩ L M ⇒𝛼 𝜔 −→32 Γ ⊩ 𝜔 ⋄ 1

Γ ⊩ 𝑒1 𝑒2 ⇒𝛼 𝜔 −→33 Γ ⊩ 𝑒1 ⇒𝛽 (𝛽 ⊲𝛾1,𝛾2 (𝛾1 → 𝛾2 • 𝑒2 ⇒⇒𝛼 𝜔))
Γ ⊩ 𝑒 @𝐴 ⇒𝛼 𝜔 −→34 Γ ⊩ 𝑒 ⇒𝛽 (𝛽 ◦𝐴 ⇒⇒𝛼 𝜔)
Γ ⊩ 𝜆𝑥 . 𝑒 ⇒𝛼 𝜔 −→35 Γ, �̂�1, �̂�2 ⊩ 𝜔 ⋄ (𝑎1 → 𝑎2), 𝑥 : 𝑎1 ⊩ 𝑒 ⇐ 𝑎2

Γ ⊩ 𝐴 → 𝐵 ⊲𝛼,𝛽 𝜔 −→36 Γ ⊩ 𝜔 ⋄𝐴 ⋄ 𝐵
Γ ⊩ ⊥ ⊲𝛼,𝛽 𝜔 −→37 Γ ⊩ ⊤ → ⊥ ⊲𝛼,𝛽 𝜔

Γ ⊩ ∀𝑎. 𝐴 ⊲𝛼,𝛽 𝜔 −→38 Γ, �̂� ⊩ 𝐴 ⊲𝛼,𝛽 𝜔

Γ ⊩ 𝐴1 ⊓𝐴2 ⊲𝛼,𝛽 𝜔 −→39 Γ ⊩ 𝐴1 ⊲𝛼,𝛽 𝜔

Γ ⊩ 𝐴1 ⊓𝐴2 ⊲𝛼,𝛽 𝜔 −→40 Γ ⊩ 𝐴2 ⊲𝛼,𝛽 𝜔

Γ ⊩ 𝐴1 ⊔𝐴2 ⊲𝛼1,𝛼2
𝜔 −→41 Γ ⊩ 𝐴1 ⊲𝛽1,𝛽2 (𝐴2 ⊲𝛾1,𝛾2 (𝛽1 → 𝛽2 ⋓⊲ 𝛾1 → 𝛾2 ▶𝛼1,𝛼2

𝜔))
Γ ⊩ 𝑎 ⊲𝛼,𝛽 𝜔 −→42 {𝑎1 → 𝑎2/𝑎}(Γ, �̂�1, �̂�2 ⊩ 𝑎 ⊲𝛼,𝛽 𝜔)

Γ ⊩ (𝐴1 → 𝐵1) ⋓⊲ (𝐴2 → 𝐵2) ▶𝛼,𝛽 𝜔 −→43 Γ ⊩ 𝜔 ⋄ (𝐴1 ⊓𝐴2) ⋄ (𝐵1 ⊔ 𝐵2)
Γ ⊩ 𝐴 → 𝐵 • 𝑒 ⇒⇒𝛼 𝜔 −→44 Γ ⊩ 𝜔 ⋄ 𝐵 ⊩ 𝑒 ⇐ 𝐴

Γ ⊩ ∀𝑎. 𝐴 ◦ 𝐵 ⇒⇒𝛼 𝜔 −→45 Γ ⊩ 𝜔 ⋄ ([𝐵/𝑎]𝐴)
Γ ⊩ ⊥ ◦𝐴 ⇒⇒𝛼 𝜔 −→46 Γ ⊩ 𝜔 ⋄ ⊥

Γ ⊩ 𝐴1 ⊓𝐴2 ◦ 𝐵 ⇒⇒𝛼 𝜔 −→47 Γ ⊩ 𝐴1 ◦ 𝐵 ⇒⇒𝛼 𝜔

Γ ⊩ 𝐴1 ⊓𝐴2 ◦ 𝐵 ⇒⇒𝛼 𝜔 −→48 Γ ⊩ 𝐴2 ◦ 𝐵 ⇒⇒𝛼 𝜔

Γ ⊩ 𝐴1 ⊔𝐴2 ◦ 𝐵 ⇒⇒𝛼 𝜔 −→49 Γ ⊩ 𝐴1 ◦ 𝐵 ⇒⇒𝛽1 (𝐴2 ◦ 𝐵 ⇒⇒𝛽2 (𝛽1 ⋓◦ 𝛽2 ▶ 𝜔))
Γ ⊩ 𝐴1 ⋓◦ 𝐴2 ▶ 𝜔 −→50 Γ ⊩ 𝜔 ⋄ (𝐴1 ⊔𝐴2)

when �̂� ∈ Γ

when 𝑥 : 𝐴 ∈ Γ

when �̂� ∈ Γ

Fig. 6. Algorithmic Worklist Reduction (Typing)

the second result (i.e., the codomain type) to the original continuation 𝜔 . Rule 34 is similar: it

infers the type of 𝑒 and passes the result to the type application continuation. Rule 35 creates two

fresh existential variables 𝑎1, 𝑎2 as the placeholder of the function type of the abstraction 𝜆𝑥 . 𝑒 by

applying 𝜔 to 𝑎1 → 𝑎2 and checking the body 𝑒 against 𝑎2.

Rules 36-38 are the algorithmic counterparts of ⊲→, ⊲⊥ and ⊲∀. Rules 36 and 37 are two base cases
where a function type is known (by lifting ⊥ to ⊤ → ⊥). The continuation is first applied to the

domain, then to the codomain type. The modification of rule 38 of introducing an existential variable

�̂� is similar to that of rule 10. Rules 39 and 40 proceed by choosing a branch of the intersection type.
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Rule 41 is interesting because its specification counterpart requires matching both branches and

then combining the results. The algorithmic rule creates a nested continuation that first matches

𝐴1, and passes the result to the first two arguments (𝛽1 and 𝛽2) of 𝛽1 → 𝛽2 ⋓⊲ 𝛾1 → 𝛾2 ▶ 𝜔 . Then

𝐴2 is matched and passes the result to the latter two arguments (𝛾1 and 𝛾2) of the continuation.

When this continuation is fully applied, rule 43 combines the result by taking the intersection of

the domain type and the union of the codomain type. At first glance, the scope management for

𝐴2 ⊲ · · · is a bit concerning since it sees an extended context due to the process of𝐴1 ⊲ · · · . However,
it does not cause real trouble since no type variables can be introduced by matching. The actual

solution domain of existential variables that could be created during 𝐴2 ⊲ · · · remains correct. Rule

42 is added for existential variables. Since the monotype of the existential variable 𝑎 must match a

function type, we generate two fresh existential variables 𝑎1 and 𝑎2 and replace 𝑎 with 𝑎1 → 𝑎2
using worklist substitution. Rule 44 checks whether an expression of the function type 𝐴 → 𝐵,

solved by matching, can be applied to another expression 𝑒 by adding a checking judgment 𝑒 ⇐ 𝐴

to the worklist. The result of application 𝐵 is fed to the continuation.

Rules 45-49 are the algorithmic counterparts of ◦⇒⇒∀, ◦⇒⇒⊥, ◦⇒⇒⊓1, ◦⇒⇒⊓2, and ◦⇒⇒⊔.
Rules 45 and 46 are two base cases where the result of the type application can be fully determined,

so we apply the continuation to the known result type. Rule 47 and 48 proceed by choosing a

branch of the intersection type. Similar to matching, rule 49 also combines the results of both

branches by creating a nested continuation, and the actual combination is done by rule 50. The

scope management is not a problem here since type application does not even change the scope.

There is no new rule for existential variables because a monotype can never be type-applied.

Metatheory. This algorithmic system is sound and complete with respect to the specification. It is

also decidable. The formal statement is shown below. Some proof details, including the generalized

theorems to conduct inductions, are discussed in more detail in Section 5.

Theorem 4.1 (Soundness and Completeness). Given · ⊢ 𝑒 and · ⊢ 𝐴 , then
(1) · ⊢ 𝑒 ⇐ 𝐴, iff · ⊩ 𝑒 ⇐ 𝐴 −→∗ ·.
(2) · ⊢ 𝑒 ⇒ 𝐴, iff · ⊩ 𝑒 ⇒𝛼 𝛼 ≤ ⊤ −→∗ ·.
Theorem 4.2 (Decidability). Given ⊢ Γ, it is decidable whether Γ −→∗ · or not.

5 Metatheory
This section discusses interesting aspects of the metatheory. We first discuss interesting properties

of the bidirectional type system, including properties about subtyping, checking subsumption, and

type safety. Then we discuss the soundness and completeness of the algorithmic type system. For

soundness and completeness, an important innovation in our work is a new style of transfer relation

that connects the algorithmic and the bidirectional type systems. Finally, we discuss decidability,

which is subtle due to the branching caused by intersection and union types and requires a complex

measure based on a tuple with 9 components. Figure 7 shows the overview of each system and the

properties proved for them.

5.1 Type System Properties
Subtyping reflexivity, transitivity and stability under polytype instantiation. The proof of subtyping

reflexivity is straightforward by induction on the well-formedness of 𝐴. Transitivity is proved by

first defining an equivalent step-indexed subtyping relation Ψ ⊢ 𝐴 ≤ 𝐵 | 𝑛 and induction on the

sum of steps (𝑛1 +𝑛2), and the number of ∀ of the middle type 𝐵. In the proof, an inductively defined

ordinary-type relation 𝐵◦
[Davies and Pfenning 2000; Huang et al. 2021] is useful to decompose

intersection and union types to a base type that is no longer an intersection or union type. Stability

under polytype instantiation is proved by generalizing the theorem to a substitution-based form.
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Specification
subtyping transitivity

checking subsumption

type safety

Intermediate Worklist
(delegation)

Intermediate Worklist
(continuation-passing)

Algorithmic Worklist
decidability

Fig. 7. Overall Proof Structure. Arrows indicate the relative soundness and completeness between two systems.
Properties proved in each system are listed in each box.

Lemma 5.1 (Stability under Polytype Substitution). Let Ψ ≔ Ψ1, 𝑎,Ψ2, given ⊢ Ψ, Ψ ⊢ A,
Ψ ⊢ B, and Ψ1 ⊢ C, if Ψ ⊢ A ≤ B, then Ψ1, [C/a]Ψ2 ⊢ [C/a]A ≤ [C/a]B.

Checking subsumption. To prove the checking subsumption theorem, we first prove the sub-

sumption lemmas for matching and the type application judgment independently. Stability under

polytype instantiation is used in the proof of type-application subsumption.

Lemma 5.2 (Matching and Type-Application Subsumption). Given Ψ, 𝐴,𝐴′ well-formed,
(1) If Ψ ⊢ A ⊲ B → C, Ψ ⊢ A′ ≤ A, then ∃B′,C′ s.t. Ψ ⊢ 𝐴′ ⊲ 𝐵′ → 𝐶′ and Ψ ⊢ B′ → C′ ≤ B → C.
(2) If Ψ ⊢ A ◦ B ⇒⇒ C and Ψ ⊢ A′ ≤ A, then ∃C′ s.t. Ψ ⊢ A′ ◦ B ⇒⇒ C′ and Ψ ⊢ C′ ≤ C.

The general subsumption requires two lemmas, for both checking and inference, and a sub-

context relation Ψ′ <: Ψ that allows variables 𝑥 to be rebound to a subtype in Ψ′
.

· <: ·
Ψ′ <: Ψ

Ψ′, 𝑎 <: Ψ, 𝑎

Ψ′ <: Ψ

Ψ′, 𝑎 <: Ψ, 𝑎

Ψ′ <: Ψ Ψ ⊢ 𝐴 ≤ 𝐵

Ψ′, 𝑥 : 𝐴 <: Ψ, 𝑥 : 𝐵

Then, by induction on the size of 𝐴, the size of 𝑒 and the size of mode (⇒ is 0 and ⇐ is 1), we can

prove the general subsumption lemma.

Lemma 5.3 (Subsumption). Given Ψ,Ψ′, 𝑒, 𝐴 well-formed and Ψ ′ <: Ψ ,
(1) if Ψ ⊢ e ⇐ A, Ψ ⊢ A′, and Ψ ⊢ A ≤ A′, then Ψ ′ ⊢ e ⇐ A′;
(2) if Ψ ⊢ e ⇒ A, then exists A′ s.t. Ψ ⊢ A′ ≤ A and Ψ ′ ⊢ e ⇒ A′.

Type Safety. The type safety of our type system is derived via an elaboration to System 𝐹 with

product and sum types (𝐹×+). This elaboration is similar to other elaborations used in the past to

prove type safety of calculi with intersection and union types [Dunfield 2014; Pierce 1992]. The

elaboration fills all the implicit instantiation and takes a coercive interpretation of each type-level

conversion, including subtyping, matching, and type application.

Theorem 5.4 (Type Safety). Given Ψ, 𝑒, 𝐴 well-formed, if Ψ ⊢ e ⇔ A ↩→ 𝑒′ then |Ψ | ⊢F×+ e′ : |A|

5.2 Soundness and Completeness
To help formalize the correspondence between the specification and algorithmic systems, we build

an intermediate system: intermediate worklist [Zhao et al. 2019]. The intermediate worklist has

a similar syntax to Γ but it does not have existential variables. Similar to the notations in the

algorithmic worklist, ⊢ Ω, Ω ⊢ 𝐴, Ω ⊢ 𝑒 and Ω ⊢ 𝑤 denote various well-formedness relations.

There are two sets of reduction rules for this intermediate system, reduction by delegation

Ω −→ Ω′
and reduction by continuation-passing Ω −→𝜔 Ω′

, for soundness and completeness

proofs, respectively. Ω −→ Ω′
is a rephrasing of the judgments in the bidirectional system using the

worklist syntax, while Ω −→𝜔 Ω′
mimics the algorithmic reduction using the continuation-passing

style but still guesses the monotype 𝜏 instead of introducing existential variables. The detailed

rules of well-formedness and reduction of the intermediate worklist can be found in the extended

version of this paper. Ω −→∗ · and Ω −→∗
𝜔 · are proved equivalent:
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Theorem 5.5 (Eqivalence of Intermediate Worklist Reduction). Given ⊢ Ω, then Ω −→∗ ·
iff Ω −→∗

𝜔 ·.

For soundness and completeness of the algorithm, the form presented in Thm. 4.1 cannot be

proved by induction directly. This form is too specific as it only includes worklists with: (1) only

one inference or checking work and; (2) all expressions and types well-formed under the empty

context. Proving by induction requires generalizing this theorem to discuss the properties of a wider

range of worklists with: (1) arbitrary number and type of works; and (2) free variables. The latter

generalization is tricky since the algorithmic worklist has one more type of free variables, existential

variables. Thus, we need to define a relation to relate algorithmic worklists and intermediate

worklists. Previous works [Cui et al. 2023; Zhao and Oliveira 2022; Zhao et al. 2019] use the

following transfer relation, which relates a worklist Ω with all algorithmic worklists Γ if Γ is equal

to Ω under a substitution of all existential variables in Γ to a well-formed declarative monotype.

Ω⇝ Ω
⇝Ω

Ω ⊢ 𝜏 Ω, [𝜏/𝑎]Γ⇝ Ω′

Ω, �̂�, Γ⇝ Ω′ ⇝â

This relation is analogous to logical relations used in the proof of contextual equivalence [Reynolds

1983]: they are both developed to interpret free variables. Here, this relation interprets free existential

variables as arbitrary well-formed declarative monotypes. This transfer relation is conceptually

enough for the proof, but it presents three practical problems. Firstly, it analyzes the algorithmic

worklist from the beginning to the end, contrary to how it is inductively defined. Secondly, it

has pervasive use of substitution, especially the substitution over the whole worklist. Thirdly, it

erases the information of the positions and instantiations of existential variables. These problems

complicate the reasoning. The reversed definition starting from the beginning of the worklist and the

erasure of the structure complicate the inductive reasoning of certain properties. The substitution

operation requires a large number of inversion lemmas to reason about the correspondence between

the shape of type, expression, and work of two related worklists Γ and Ω (e.g. if the last work in Ω
is a subtyping judgment, so should be for Γ). Not to mention the intrinsic difficulty of reasoning

about substitutions in proof assistants like Coq without built-in support for binders.

Such drawbacks motivate us to develop a new relation, more syntax-directed, to describe the

transfer. The new transfer relation is inductively defined for each syntactic category: types (𝜃 ⊨
𝐴 ⇝ 𝐴′

), expressions (𝜃 ⊨ 𝑒 ⇝ 𝑒′), continuations (𝜃 ⊨ 𝜔𝑠 ⇝ 𝜔𝑠 ′
and 𝜃 ⊨ 𝜔𝑑 ⇝ 𝜔𝑑 ′

)
5
works

(𝜃 ⊨ 𝑤 ⇝ 𝑤 ′
), and worklists (𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′). 𝜃 is a substitution set 𝜃 ≔ · | 𝜃, 𝑎 | 𝜃, 𝑎 | 𝜃, �̂� : 𝜏 that

keeps track of each existential variable 𝑎 and its instantiation 𝜏 , which is a well-formed declarative

monotype. 𝜃 also keeps track of type variables so that the well-formedness of each instantiation 𝜏

can be checked just by inspecting 𝜃 .

The transfer relation of types, expressions, continuations, and works should be read as: under

the current substitution set 𝜃 , an algorithmic type, expression, continuation, or work is transferred

to a declarative type, expression, continuation, or work by replacing all the existential variables in

the types to its declarative monotype instantiation 𝜏 bound in 𝜃 , respectively. The transfer relation

of types, expressions, and worklists is shown in Figure 8. The transfer relation of continuations and

works follows the same routine, as they always get decomposed to transfer types and expressions.

The concrete rules are shown in Figure S7 in the extended version of this paper. The transfer of

worklists (𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′) should be read as, the worklist Γ is transferred to Ω under substitution

set 𝜃 and 𝜃 is extended to 𝜃 ′ with more type variables and existential variables in Γ. When the last

entry of the algorithmic worklist is a type variable, subtype variable, or existential variable, 𝜃 gets

5
Instead of using HOAS, we adopt a defunctionalized style for continuation, with details shown in the extended version of

this paper So the continuation has its own syntax categories.
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𝜃 ⊨ 𝐴⇝ 𝐴′ 𝐴 is transferred to 𝐴′
under 𝜃

𝜃 ⊨ 1⇝ 1 𝜃 ⊨ ⊤⇝ ⊤ 𝜃 ⊨ ⊥⇝ ⊥
𝑎 ∈ 𝜃 ∨ 𝑎 ∈ 𝜃

𝜃 ⊨ 𝑎⇝ 𝑎

�̂� : 𝜏 ∈ 𝜃

𝜃 ⊨ 𝑎 ⇝ 𝜏

𝜃, 𝑎 ⊨ 𝐴⇝ 𝐴′

𝜃 ⊨ ∀𝑎. 𝐴⇝ ∀𝑎. 𝐴′

𝜃 ⊨ 𝐴1 ⇝ 𝐴′
1

𝜃 ⊨ 𝐴2 ⇝ 𝐴′
2

𝜃 ⊨ 𝐴1 → 𝐴2 ⇝ 𝐴′
1
→ 𝐴′

2

𝜃 ⊨ 𝐴1 ⇝ 𝐴′
1

𝜃 ⊨ 𝐴2 ⇝ 𝐴′
2

𝜃 ⊨ 𝐴1 ⊓𝐴2 ⇝ 𝐴′
1
⊓𝐴′

2

𝜃 ⊨ 𝐴1 ⇝ 𝐴′
1

𝜃 ⊨ 𝐴2 ⇝ 𝐴′
2

𝜃 ⊨ 𝐴1 ⊔𝐴2 ⇝ 𝐴′
1
⊔𝐴′

2

𝜃 ⊨ 𝑒 ⇝ 𝑒′ 𝑒 is transferred to 𝑒′ under 𝜃

𝜃 ⊨ 𝑥 ⇝ 𝑥 𝜃 ⊨ L M⇝ L M

𝜃 ⊨ 𝑒 ⇝ 𝑒′

𝜃 ⊨ 𝜆𝑥 .𝑒 ⇝ 𝜆𝑥 . 𝑒′
𝜃 ⊨ 𝑒′

1
⇝ 𝑒′

1
𝜃 ⊨ 𝑒′

2
⇝ 𝑒′

2

𝜃 ⊨ 𝑒1 𝑒2 ⇝ 𝑒′
1
𝑒′
2

𝜃 ⊨ 𝑒 ⇝ 𝑒′ 𝜃 ⊨ 𝐴⇝ 𝐴′

𝜃 ⊨ 𝑒 : 𝐴⇝ 𝑒′ : 𝐴′
𝜃 ⊨ 𝑒 ⇝ 𝑒′ 𝜃 ⊨ 𝐴⇝ 𝐴′

𝜃 ⊨ 𝑒 @𝐴⇝ 𝑒′ @𝐴′
𝜃, 𝑎 ⊨ 𝑒 ⇝ 𝑒′ 𝜃, 𝑎 ⊨ 𝐴⇝ 𝐴′

𝜃 ⊨ Λ𝑎.𝑒 : 𝐴⇝ Λ𝑎.𝑒′ : 𝐴′

𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′ Γ is transferred to Ω with 𝜃 updated to 𝜃 ′

𝜃 ⊨ ·⇝ · ⊨𝜃
𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′

𝜃 ⊨ Γ, 𝑎⇝ Ω, 𝑎 ⊨𝜃 ′, 𝑎

𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′

𝜃 ⊨ Γ, 𝑎⇝ Ω, 𝑎 ⊨𝜃 ′, 𝑎

𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′ ⌊𝜃 ′⌋ ⊢ 𝜏
𝜃 ⊨ Γ, �̂�⇝ Ω ⊨𝜃 ′, �̂� : 𝜏

𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′ 𝜃 ′ ⊨ 𝐴⇝ 𝐴′

𝜃 ⊨ Γ, 𝑥 : 𝐴⇝ Ω, 𝑥 : 𝐴′ ⊨𝜃 ′
𝜃 ⊨ Γ⇝ Ω ⊨𝜃 ′ 𝜃 ′ ⊨ 𝑤 ⇝ 𝑤 ′

𝜃 ⊨ Γ ⊩ 𝑤 ⇝ Ω ⊩ 𝑤 ′ ⊨𝜃 ′

Fig. 8. Syntax-directed transfer for types, expressions and worklists.
updated. Type variables and subtype variables are kept in the transferred intermediate worklist and

existential variables get erased. The last two cases (variables and works) of worklist transfer are

straightforward. It is not hard to informally verify that, when the input substitution set is empty,

this new syntax-directed transfer relation is equivalent to the one used by Zhao et al. [2019].

Soundness and completeness are built upon this new syntax-directed transfer to relate a interme-

diate worklist with multiple algorithmic worklists. The quantifiers in the two lemmas are different

because worklist transfer is a non-deterministic relation.

Theorem 5.6 (Soundness). If ⊢ Γ and Γ −→∗ ·, then exists 𝜃,Ω, s.t. · ⊨ Γ ⇝ Ω ⊨𝜃 , and Ω −→∗ ·.
Theorem 5.7 (Completeness). If Ω −→∗

𝜔 ·, ⊢ Γ , and · ⊨ Γ ⇝ Ω ⊨𝜃 , then Γ −→∗ ·.
The proof proceeds by induction of the derivation of Γ −→∗ · and Ω −→∗

𝜔 ·, respectively. There
are three interesting points about this new proof, which we discuss next.

Existential-variable solving. Existential-variable solving is all dealt with by worklist substitution.

The corresponding cases on the proof are unified, all depending on the instantiation-consistency

lemma that worklist substitution preserves the worklist transfer. The lemma now requires reasoning

about the properties of the substitution set 𝜃 as well. With a stronger conclusion, the induction

hypothesis is then strong enough to be applied: (1) the substitution set is well-formed (⊢ 𝜃 ′); (2) the
resulting substitution set before and after the worklist substitution contains the same entries except

�̂� : 𝜏 (𝜃
/�̂�
≡ 𝜃 ′). These lemmas capture the core invariance of worklist substitution: instantiation for

other existential variables remain valid after and before it.

Lemma 5.8 (Instantiation Consistency).

(1) If · ⊨ {𝜏/a}Γ ⇝ Ω ⊨𝜃 , then exists 𝜃 ′, 𝜏 ′ s.t. · ⊨ Γ ⇝ Ω ⊨𝜃 ′, 𝜃 ⊨ 𝜏 ⇝ 𝜏 ′, 𝜃 ′ ⊨ 𝜏 ⇝ 𝜏 ′, and

�̂� : 𝜏 ′ ∈ 𝜃 ′, 𝜃
/�̂�
≡ 𝜃 ′, and ⊢ 𝜃 ′;
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(2) If · ⊨ Γ ⇝ Ω ⊨𝜃 , 𝜃 ⊨ 𝜏 ⇝ 𝜏 ′, �̂� : 𝜏 ′ ∈ 𝜃 , and 𝑎 ∉ fv(𝜏), then exists 𝜃 ′, s.t. · ⊨ {𝜏/a}Γ ⇝ Ω ⊨𝜃 ′,

𝜃
/�̂�
≡ 𝜃 ′, and ⊢ 𝜃 ′.

Occurs-check. The case ≤→ of the completeness proof relies on a property to ensure the occurs-

check condition in rules 18 and 19 is always satisfied when one side is transferred from an existential

variable and the other is transferred from a function type. The satisfiability is guaranteed by the

following lemma. Compared with the lemmas used by Cui et al. [2023], this lemma only needs to

cover mono function types, since the occurs-check is dropped for rules 20 and 21 about comparing

existential variables with non-mono function types.

Lemma 5.9 (Satisfiability of Occurs-check).

(1) If · ⊨ Γ ⊩ a ≤ 𝜎1 → 𝜎2 ⇝ Ω ⊩ 𝜏1 → 𝜏2 ≤ 𝜎 ′
1 → 𝜎 ′

2 ⊨𝜃 , â ∈ Γ , and ⌊Ω⌋ ⊢ 𝜏1 → 𝜏2 ≤ 𝜎 ′
1 → 𝜎 ′

2 ,
then a ∉ fv(𝜎1 → 𝜎2);

(2) If · ⊨ Γ ⊩ 𝜎1 → 𝜎2 ≤ a ⇝ Ω ⊩ 𝜎 ′
1 → 𝜎 ′

2 ≤ 𝜏1 → 𝜏2 ⊨𝜃 , â ∈ Γ , and ⌊Ω⌋ ⊢ 𝜎 ′
1 → 𝜎 ′

2 ≤ 𝜏1 → 𝜏2 ,
then a ∉ fv(𝜎1 → 𝜎2).

This lemma is proved by contradiction: if 𝑎 occurs in 𝜎1 → 𝜎2 and 𝑎 is transferred to 𝜏1 → 𝜏2,

then 𝜎 ′
1
→ 𝜎 ′

2
must have a deeper function type than 𝜏1 → 𝜏2. However, for the subtyping relation

⌊Ω⌋ ⊢ 𝜏1 → 𝜏2 ≤ 𝜎 ′
1
→ 𝜎 ′

2
to hold in the type system specification, 𝜎 ′

1
→ 𝜎 ′

2
and 𝜏1 → 𝜏2 must have

function type of the same depth, since monotype subtyping is structural. Note that it is very hard

to generalize this lemma to the non-monotype case, since the subtyping relation of intersection

and union types are highly non-structural.

Transfer relation inversion. Since the existential variables get erased during the transfer, the

syntactic correspondence between Γ and Ω is not completely trivial: Γ, �̂�1, . . . , �̂�𝑛 (an algorithmic

worklist with trailing existential variables) is transferred to the same intermediate worklist Ω as

Γ does. Because of this, in the proof of completeness, if we naively invert the transfer relation

· ⊨ Γ ⇝ Ω ⊨𝜃 , there is always an extra case saying that Γ could be some Γ′, �̂� and Γ′ is still
transferred to Ω. To get rid of this, we first show that an algorithmic worklist with trailing existential

variables can always reduce to an algorithmic worklist whose last entry is no longer an existential

variable, and then perform the inversion.

5.3 Decidability
The decidability proof is based on a lexicographic group of 9 measures on the worklist Γ: ( |Γ |𝑒 , |Γ |𝜔 ,
|Γ |⇒⇒, |Γ |⇒⇒𝜔

, |Γ |⊲, |Γ |⊲𝜔 , |Γ |→, |Γ |
�̂�
, |Γ |≤). These measures are: term size (|Γ |𝑒 ), number of judgments

(|Γ |𝜔 ), type size of type-application judgments (|Γ |⇒⇒), number of type-application judgments

(|Γ |⇒⇒𝜔
), type size of matching judgments (|Γ |⊲), number of matching judgments (|Γ |⊲𝜔 ), sum

of ranks of non-mono components (|Γ |→), number of existential variables (|Γ |
�̂�
), and type size

of subtyping of the worklist (|Γ |≤ ), respectively. This group of measure always decreases after

1 or 2 steps of reduction, so the reasoning itself is straightforward. Nonetheless, the measure

gets significantly more complicated because of intersection and union types. The general design

principles are (1) measures related to expressions and typing should be put in the early positions; (2)

measures about the types and subtyping can be put in latter positions, while the detailed measure

definitions and the concrete rationales behind their design are in the extended version of this paper.

We highlight some challenges and sketched solutions here.

Theorem 5.10 (Decidability). Given ⊢ Γ, ( |Γ |𝑒 , |Γ |𝜔 , |Γ |⇒⇒, |Γ |⇒⇒𝜔
, |Γ |⊲, |Γ |⊲𝜔 , |Γ |→, |Γ |

�̂�
, |Γ |≤)

< (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛8, 𝑛9), Γ −→∗ · is decidable.
New sum-of-ranks measure. The measure |Γ |→ computes the sum of ranks (i.e. depth inside

function type) of non-monotype components of each type. It captures the essence of polytype
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splitting proposed in 𝐹𝑏≤ [Cui et al. 2023]: when every split destructs a polytype function type

𝐴 → 𝐵, every non-monotype component in it will have a smaller rank. This generalizes the

split measure used by Cui et al. to provide a uniform treatment for all polytypes and avoids the

unintuitive post-computation needed by the original measure. This measure always decreases in

rule 20 and 21 whether 𝑎 ∈ fv(𝐴 → 𝐵) or not, so the occurs-check is not needed for them.

Duplication and recursively computed measures. The major complexity of the decidability proof

is the duplication caused by intersection and union types. In previous systems, when multiple

judgments are created by some algorithmic reduction rules, every component of the new judgments

becomes structurally smaller. For example, in rule 9, 𝐴1, 𝐴2, 𝐵1, 𝐵2 are all structurally smaller than

𝐴1 → 𝐴2 and 𝐵1 → 𝐵2. However, in 𝐹𝑒⊔⊓, certain types and expressions may just get duplicated

twice without any changes. Type duplication happens in subtyping (rule 12, 𝐴 ≤ 𝐵1 ⊓ 𝐵2 and 15,

𝐴1 ⊔𝐴2 ≤ 𝐵). Therefore, the maximum number of duplications for each type should be considered.

In the subtyping work 𝐴 ≤ 𝐵, 𝐴 may be duplicated up to |𝐵 |⊔⊓ times and 𝐵 may be duplicated

up to |𝐴|⊔⊓ times (| · |⊔⊓ means the number of intersection and union types). Consequently, the

type size of subtyping of 𝐴 ≤ 𝐵 (|𝐴 ≤ 𝐵 |≤ ) is calculated as |𝐴|≤ · ( |𝐵 |⊔⊓ + 1) + |𝐵 |≤ · ( |𝐴|⊔⊓ + 1).
Expression duplication happens in checking (rule 25, 𝑒 ⇐ 𝐴1 ⊓𝐴2). The situation in typing is even

more complex: though the duplication only happens in checking, checking can be created from the

inference of application 𝑒1 𝑒2 ⇒ 𝜔 , where the domain type matched from 𝑒1 is used to check 𝑒2.

Since the type to check 𝑒2 is not known yet, we must develop an over-estimation by syntactically

analyzing 𝑒1 and the whole chain of continuation to accumulate all the information. This estimation

is possible because intersection and union types that trigger duplications must originate from the

annotations in the expressions.

Modular reasoning for matching and type-application. Since rule 49 creates one more type-

application judgment without decreasing the expression size, the size of the type-application

judgment must be counted as 0 in |Γ |𝜔 , otherwise the overall measure must increase. We develop

two new measures: |Γ |⇒⇒ and |Γ |⇒⇒𝜔
to reason about the reduction behavior of type application.

Since type-application only creates new type-application judgments and the type being type-applied

always gets smaller, |Γ |⇒⇒ counts the size of the type being type-applied, and |Γ |⇒⇒𝜔
counts the

number of the type-application judgment. So the termination of each type-application: for any type

𝐴, 𝐵,𝐴◦𝐵 ⇒⇒ 𝜔 will reduce to𝜔 ⋄𝐶 or not after a certain number of steps, can be established using

these two measures. Similarly, |Γ |⊲ and |Γ |⊲𝜔 are designed to reason about the termination of each

matching judgment: for any type 𝐴, 𝐴 ⊲𝛼,𝛽 𝜔 will always reduce to 𝜔 ⋄ 𝐵 ⋄𝐶 or not after a certain

number of steps. The situation of matching is almost the same as that of type application: rule 41

creates more matching judgments, and the type being matched always gets smaller. The reason to

put |Γ |⇒⇒, |Γ |⇒⇒𝜔
in front of |Γ |⊲, |Γ |⊲𝜔 is that the result of matching can never be type-applied but

the result of type application can possibly be matched. These new measures isolate the reasoning

of matching and type application and simplify the overall logic.

6 Extensions
In this section, we present two extensions of 𝐹𝑒⊔⊓, which are useful in practice. The first extension

adds a form of labels to 𝐹𝑒⊔⊓, and enables an encoding of records, discussed in Sec. 6.1. The second

extension widens monotypes to include intersections and union types, discussed in Sec. 6.2. Both

extensions have also been formalized in Coq. The soundness of the corresponding algorithmic

system with respect to the bidirectional specification is proved. However, allowing intersection and

union types as monotypes makes the algorithm incomplete. Sec. 6.3 further discusses the possibility

of adding more features to 𝐹𝑒⊔⊓, for which we have no proofs or formalization.
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6.1 Encoding Records as Intersection Types
The type system of 𝐹𝑒⊔⊓ is quite general as it supports unrestricted intersection and union types.

Thus, it can be extended to support other useful language features easily. In this section, we

demonstrate one of such extensions: supporting records by encoding record types as intersection

types. In this extension, we rely on the expressive power of the matching relation in 𝐹𝑒⊔⊓, which is

capable of dealing with record subtyping without any additional rules or changes. This extension is

partly inspired by existing encodings of records using first-class labels and functions [Castagna et al.

1995]. The syntax for this extension is shown below. Label name is a set of available names that

can be used as a label for records, or other structures. The label is first-class at the type level and

represented by the new Label 𝑙 syntax. Expressions are extended with three new forms: singleton

record ⟨𝑙 ↦→ 𝑒⟩, record extension ⟨𝑙1 ↦→ 𝑒1, 𝑒2⟩, and record projection 𝑒.𝑙 . The label at the expression
level can only be used in such expressions, and thus it is not first-class. We further enforce that 𝑒2
must be another record in record extension expressions as an extra condition in well-formedness.

. . . Label name ::= 𝑙

Types 𝐴, 𝐵,𝐶 ::= · · · | Label 𝑙
Monotypes 𝜏, 𝜎 ::= · · · | Label 𝑙
Expressions 𝑒, 𝑡 ::= · · · | ⟨𝑙 ↦→ 𝑒⟩ | ⟨𝑙1 ↦→ 𝑒1, 𝑒2⟩ | 𝑒.𝑙
Four rules are added to the type system: one in subtyping (≤Label); and three in typing (⇒⟨⟩,

⇒⟨⟩Cons and⇒⟨⟩Proj). The subtyping rule is simply a reflexive rule for the new type constructor.

The typing rules for records are all inference rules. A singleton record infers a function type from

the label type to the types of its carried expression. A record extension infers an intersection type of

its head and tail types. For example, ⟨𝑙1 ↦→ L M, ⟨𝑙2 ↦→ L M⟩⟩ infers (Label 𝑙1 → 1) ⊓ (Label 𝑙2 → 1).
With such an encoding, the record projection can be completely dealt with by the existing matching

relation, as shown in the rule ⇒⟨⟩Proj. Compared with rule ⇒App, the only difference is that the

last premise is changed from Ψ ⊢ 𝑒2 ⇐ 𝐵 to Ψ ⊢ Label 𝑙 ≤ 𝐵.

Ψ ⊢ 𝑒 ⇒ 𝐴

Ψ ⊢ ⟨𝑙 ↦→ 𝑒⟩ ⇒ Label 𝑙 → 𝐴
⇒⟨⟩

Ψ ⊢ 𝑒1 ⇒ 𝐴1 Ψ ⊢ 𝑒2 ⇒ 𝐴2

Ψ ⊢ ⟨𝑙1 ↦→ 𝑒1, 𝑒2⟩ ⇒ (Label 𝑙1 → 𝐴1) ⊓𝐴2

⇒⟨⟩Cons

Ψ ⊢ 𝑒 ⇒ 𝐴 Ψ ⊢ 𝐴 ⊲ 𝐵 → 𝐶 Ψ ⊢ Label 𝑙 ≤ 𝐵

Ψ ⊢ 𝑒.𝑙 ⇒ 𝐶
⇒⟨⟩Proj

Ψ ⊢ Label 𝑙 ≤ Label 𝑙
≤Label

This extension still has the good properties of subtyping transitivity and checking subsumption

as the base system does, and it is also equipped with a sound and complete algorithmic system.

The algorithm is extended with three new works and seven new rules to deal with this new feature,

with details in the extended version of the paper . We did not prove decidability for the algorithm,

but we believe it is a simple modification of the existing proof. Since the record expressions always

become structurally smaller for all the new rules, and the label type is nothing different from the

unit type, it should be easy to extend the current measure definition to the new syntax and follow

the same reasoning. In addition to records, it should be possible to add some other features quite

easily as well. For instance, adding variants and variant subtyping can be done with a similar

approach, by relying on matching and first-class labels.

6.2 Inferring Intersection and Union Types
While 𝐹𝑒⊔⊓ has good properties, completeness is achieved at the cost of a fairly restrictive definition

of monotypes that excludes intersection and union types. In practice though, we may want to

infer intersection and union types. It is possible to extend our definition of monotypes to include

these, while still employing our algorithm. The extended monotype definition is 𝜏, 𝜎 ::= 1 | 𝑎 |
𝜏 → 𝜎 | 𝜏 ⊓ 𝜎 | 𝜏 ⊔ 𝜎 (𝑎 is still a type variable). With this new definition, 1 ⊓ (1 → 1) and
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(Label 𝑙1 → 1) ⊓ (Label 𝑙2 → 1) now become monotypes. This enables a larger class of types to

be inferred. The rules of the bidirectional and the algorithmic type systems are the same as in the

previous extension.

In this extension, the bidirectional type system itself retains all the properties as the previous

one. The greedy algorithm remains sound but it is not complete, as we explained in Section 3.

Despite incompleteness to the specification, it does accept strictly more programs compared with

previous systems, at a cost of more backtracking in existential-variable solving. For example,

given Γ ⊩ 1 ⊓ (1 → 1) ≤ 𝑎 and �̂� ∈ Γ, our algorithm will first try to solve 𝑎 to 1 ⊓ (1 → 1).
If this solution fails, the algorithm will continue to try 1 and 1 → 1. It is still greedy, but it
tries to make more use of the first instantiation found: try it and its approximations. Due to the

incompleteness, the algorithmic type system may not enjoy the same properties of the bidirectional

specification. We do not have the decidability for this algorithm either, since the intersection and

union types could now be introduced by solving monotypes. For example, 𝜆𝑥 .𝑥 ⇐ 𝑎 could become

𝜆𝑥.𝑥 ⇐ (Int → Int) ⊓ (Bool → Bool) if 𝑎 is solved to (Int → Int) ⊓ (Bool → Bool). Thus, it
violates the principle that our decidability proof builds on: all intersection and union types are

from the annotations of expression, so the duplication can be statically computed. Nonetheless,

we still conjecture that the algorithm will terminate since occurs-check is still employed in this

system. However, proving this, if possible, would require a new proof strategy.

6.3 Prospect for More Features
In this section, we briefly discuss the possibility of adding two more features into 𝐹𝑒⊔⊓: gradual
typing and distributive subtyping.

Gradual typing. Since we use TypeScript as the major motivating programming language, it is

natural to first consider another important feature of it, gradual typing. The combination between

bidirectional HRP and gradual typing has been previously studied by Xie et al. [2019]. They argue

that “gradual typing and polymorphism are orthogonal and can be combined in a principled way”.

Their rule extension to the declarative system is surprisingly simple, with two new rules in the

subtyping (★means an unknown type):

Ψ ⊢ ★ ≤ 𝐴 Ψ ⊢ 𝐴 ≤ ★

As this system is also based on DK’s implicit predicative HRP system, we think these ideas can

be combined with our work. On the other hand, the combination of intersection and union types

with gradual typing has also been studied by Castagna and Lanvin [2017] through the semantic

subtyping approach. Semantic subtyping allows complex transformation and simplification of types,

and usually comes with other set-theoretic operators like negation (¬), greatly different from our

syntactic approach. Another challenge is that, after adding the gradual typing, we would possibly

want a new set of desirable properties (e.g., gradual guarantee) for the bidirectional specification.

Distributive subtyping. Another feature closely related to intersection and union types is dis-

tributive subtyping rules.

(𝐴1 ⊔𝐴2) ⊓ 𝐵 ≤ (𝐴1 ⊓ 𝐵) ⊔ (𝐴2 ⊓ 𝐵)
≤⊔Dist⊓

(∀𝑎. 𝐴) ⊓ (∀𝑎. 𝐵) ≤ ∀𝑎. (𝐴 ⊓ 𝐵)
≤⊓Dist∀

(𝐴 → 𝐵1) ⊓ (𝐴 → 𝐵2) ≤ 𝐴 → (𝐵1 ⊓ 𝐵2)
≤⊓Dist→

∀𝑎. (𝐴 ⊔ 𝐵) ≤ (∀𝑎. 𝐴) ⊔ (∀𝑎. 𝐵)
≤⊔Dist∀

(𝐴1 → 𝐵) ⊓ (𝐴2 → 𝐵) ≤ (𝐴1 ⊔𝐴2) → 𝐵
≤⊔Dist→
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Various forms of distributivity have been implemented by different languages, including Scala,

TypeScript, Ceylon, CDuce [Castagna and Frisch 2005] and Julia [Nardelli et al. 2018]. Rioux et al.

[2023] provides a systematic study of the distributivity between intersection and union types, and

function types and universal types.

Distributivity has non-trivial interactions with existing features. For HRP, the distributivity with

function types allows intersection and union types nested inside function types to be decomposed.

In 𝐹𝑒⊔⊓, the only instantiation to make ∀𝑎. 𝑎 → Int ≤ (Int⊔Bool) → Int hold is Int⊔Bool. With

distributivity, if the subtyping is still transitive, ∀𝑎. 𝑎 → Int ≤ (Int → Int) ⊓ (Bool → Int) ≤
(Int ⊔ Bool) → Int only requires 𝑎 to be instantiated to Int and Bool separately. For explicit

type applications, the distributivity with universal types needs the type application judgment to

consider both branches for the intersection type case. Both seem to complicate reasoning, but we

believe that an extension of 𝐹𝑒⊔⊓ with distributivity rules is possible.

7 Related Work
Polymorphic type inference with intersections and union types. Most works on type inference with

parametric polymorphism, as well as intersection and union types, support only a restrictive form

of intersection and union types. Jim [2000] introduces a polar type system, called P, which comes

with a decidable type inference algorithm. Intersection types and parametric polymorphism are

restricted. In P, quantifiers must only appear in positive positions, while intersection types are

restricted to appear in negative positions. MLSub [Dolan and Mycroft 2017] has sound and complete

inference for principal types based on an algebraic subtyping lattice. The types in the system are

also polarized: intersection types can only appear in negative positions; while union types can

only appear in positive positions. Simple-sub [Parreaux 2020] provides an implementation-oriented

reinterpretation of MLsub that still preserves the principality of inference and ignores the algebraic

property for simplicity. MLstruct [Parreaux and Chau 2022] extends MLsub by introducing first-

class intersections and union types and negation. However, abstractions cannot be assigned with

intersections of arrow types. Castagna et al. [2024] proposes a set-theoretic type system with

first-order polymorphism, intersection and union types. The type reconstruction algorithm is

sound, terminating, but incomplete. The type system has the intersection introduction rule and can

express overloaded functions. All of these works support only first-order (or rank-1) polymorphism

and do not support explicit type applications, unlike 𝐹𝑒⊔⊓.
SuperF [Parreaux et al. 2024] is a type inference approach based on multi-bounded polymor-

phism [Cretin 2014], supporting higher-rank polymorphism, intersection and union types. The type

inference algorithm is terminating but incomplete. SuperF employs a similar restriction as MLSub

on the allowed positions of intersection and union types. Dunfield [2009] presents a bidirectional

type systemwith higher-rank polymorphism, as well as intersection and union types. Like our work,

Dunfield employs a greedy-instantiation strategy. The corresponding type inference algorithm is

sound. However, as observed by Dunfield and Krishnaswami [2013, 2021] later, the completeness

and decidability proofs provided in Dunfield work are flawed and have not been tackled yet. Unlike

our work, none of the previous works considers the interaction with explicit type applications, and

only the work by Dunfield considers HRP with unrestricted intersection and union types as we do.

However, we have complete proofs, which are mechanically formalized and verified in the Coq

proof assistant.

Other work in higher-rank polymorphic type inference. Explicit type applications allow program-

mers to specify their own instantiations. Eisenberg et al. [2016b] proposes extensions to both

HM and a predictive HRP system with predicative explicit type applications, which has been im-

plemented in GHC 8. Zhao and Oliveira [2022] proposes 𝐹𝑒≤ to extend a predicative HRP type
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system with impredicative explicit type applications. Cui et al. [2023] extends 𝐹𝑒≤ with bounded

quantification, resulting a variant of kernel 𝐹≤ [Cardelli et al. 1994; Cardelli and Wegner 1985]. Our

work incorporates the idea of 𝐹𝑒≤ for explicit type applications. The main additions over 𝐹𝑒≤ are

intersection and union types, which have non-trivial interactions with HRP and also complicate the

interaction with explicit type applications. There are also other lines of work on impredicative HRP
for System F-like languages (without intersections and union types) [Emrich et al. 2020; Le Botlan

and Rémy 2003; Leijen 2008; Serrano et al. 2020, 2018; Vytiniotis et al. 2008]. In those type systems,

implicit instantiations can also be polytypes. These type systems are notably more complex due to

the undecidability of the natural subtyping relation [Chrząszcz 1998; Tiuryn and Urzyczyn 1996].

Thus, they must impose some restrictions to ensure decidability.

Local type inference. Local type inference [Odersky et al. 2001; Pierce and Turner 2000] has

shown to be a great success in practice and forms the foundation of type inference implementations

in many mainstream programming languages. Its success is largely attributed to its adaptability

to various programming language features. However, many practical extensions of local type

inference, such as intersection and union types, have not been formally studied. For example, Java

and Scala 2, whose type inference is based on local type inference, incorporate intersection types.

Local type inference prefers uncurried applications, where all the arguments must be given at

once. With uncurried applications, it is possible to exploit the type information of the arguments to

improve the results of type inference. For example, consider the following program in TypeScript,

which also adopts some local type inference techniques:

var r1: {m : number, n : boolean} = { m: 1, n: true }; var r2: {m : number} = { m: 2 }
function f<A>(x: A, y: A): A { return x }
var ex1 = f(r1, r2); var ex2 = f(r2, r1);
function g: <A>(x: A) => (y: A) => A = x => y => { return y }
var ex3 = g(r2)(r1);
var ex4 = g(r1)(r2) // rejected!

The type of r1 is a subtype of the type of r2. With uncurried functions, both ex1 and ex2 are

accepted, which suggests that a non-greedy constraint-solving approach, similar to what is used in

local type inference, is adopted in this case. In contrast, for curried functions, only ex3 is accepted,

and ex4 is rejected, indicating that the type argument A is committed to the type of the first

argument directly. While local type inference has been extended in mainstream programming

languages with both intersection and union types, we do not know of work formally studying

such extensions. In addition, we also do not know any work on local type inference that supports

polymorphic subtyping. In Scala 3, higher-rank types are supported, but not polymorphic subtyping.

8 Conclusion
As programming languages evolve, features that once belonged to functional programming and

OOP begin to intersect. Higher-rank polymorphism, intersection and union types, and explicit type

applications are examples of such features. In this paper, we formally study the interaction of these

features in the context of the bidirectional type system 𝐹𝑒⊔⊓. In particular, 𝐹𝑒⊔⊓ supports unrestricted

forms of intersection and union types. 𝐹𝑒⊔⊓ is equipped with a sound, complete, and decidable

algorithm that infers monotype instantiations and unannotated functions. We also discuss two

variants of 𝐹𝑒⊔⊓. One incorporates more practical features, such as handling records, by encoding

them to existing features of 𝐹𝑒⊔⊓. The other provides more inference at the cost of completeness.

As a byproduct of our work, we develop several new techniques in formalizing worklist-based

approaches, and our formalization in Coq can be used as a general framework for studying other

type systems.
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